MULTIPLE LINEAR REGRESSION

S RAMASESHAN DIRECTOR

STUDY GROUP

$$
\begin{array}{lll}
S & M & \text { SETH } \\
N & K & G O E L
\end{array}
$$

CONTENTS

PAGE

Abstract i
1.0 INTRODUCTION 1
2.0 PURPOSE OF THE PROGRAMME 3
3.0 SPECIFIC METHOD 4
4.0 COMPUTER PROGRAMME 10
4.1 Programme Subroutines 10
4.2 Programme Modifications. 15
5.0 INPUT SPECIFICATIONS,OUTPUT DESCRIPTION AND RESTRICTIONS ON USE 16
5.1 Input Specifications 16
5.2 Output Description 17
6.0 TEST DATA 19
7.0 EXAMPLE CALCULATIONS 20
8.0 APPLICATION, SAMPIE INPUT AND SAMPLE OUTPUT 22
9.0 RECOMMENDATIONS 23
REFERENCES 24
APPENDICES

ABSTRACT

The association of three or more variables can be investigated by multiple linear regression and correlation analysis. The derivation of relationships among hydrologic variables is of importance for the transfer of information from few gauged stations to many ungauged stations. The general form of the multiple linear regression is:

$$
X_{1}=B_{1}+B_{2} X_{2}+B_{3} X_{3}+\ldots \ldots \ldots+B_{m} X_{m}+\varepsilon
$$

where, X_{1} is dependent variable and $X_{2}, x_{3} \ldots x_{m}$ are independent variables. ε is the error term.

In the documentation, listing of the source programme for multiple linear regression analysis, input data file and output file is given with test data and example calculations. In the programme the selection of different sets of independent variables ana designation of dependent variable can be made as many times as desired.

The programme calculates means, standard derivations of dependent and independent variables, correlation coefficients between dependent and independent variables, regression coefficients, standard error of regression coefficients, computed t-values, intercept, multiple correlation coefficient, standard error of estimate, analysis of variance for multiple regression and table of residuals.

The derivation of relationships among hydrological variables is of great importance for the transfer of information from few gauged sites to many ungauged sites. Such relationships may be between one dependent variable and one independent variable. The relationship may also be among one dependent variable and more than one independent variables. The statistical technique of regression analysis is used for this purpose. The use of correlation and regression techniques in hydrologic analysis has increased manifold in recent years due to the advent of computers.

The relationship among three or more variables can be developed by multiple regression and correlation analysis. The general form of the multiple linear regression is given below:

$$
\begin{equation*}
\mathrm{X}_{1}=\mathrm{B}_{1}+\mathrm{B}_{2} \mathrm{X}_{2}+\ldots \ldots \ldots+\mathrm{B}_{\mathrm{m}} \mathrm{X}_{\mathrm{m}}+\varepsilon \tag{1}
\end{equation*}
$$

where,
$X_{1} \quad: \quad$ Dependent variable
$\left(X_{2}, X_{3} \ldots X_{m}\right)$:Independent variables
$\varepsilon \quad: \quad$ Error term
If equation (1) is linear i.e. all the variables (dependent and independent) are in linear form, the regression. is referred to as the multiple linear regression. The association between the variables is referred to as multiple correlation. The variables of non-linear relationships in
hydrology are often transformed to linear relationships for the multiple regression analysis as it is easier to treat linear equations.

In designing the multiple linear relationships, the selection of dependent and independent variables is of great importance. The dependent variable is defined by the problem itself. The independent variables are generally selected by the following two criteria:
(a) The variables have been observed in the past concurrently with the dependent variable so that the regression equation may be established, and they will continue to be observed in the future also so that dependent variable may be predicted from them when necéssary. (b) The dependent variable should have dependence upon independent variables, from physical point of view. The programme for multiple regression analysis described in this documentation has been taken from IBM's Scientific Subroutine Package and has been implemented/tested on VAX-ll/ 780 computer system of National Institute of Hydrology, Roorkee.

The multiple linear regression analysis is performed for a set of independent variables and a dependent variable. In this programme selection of different sets of independent variables and designation of a dependent variable can be made as many times as desired. The programme carries out the following operations:
(a) Reads the title of the problem for multiple regression.
(b) Reads subset selections i.e. different sets of selections of independent and dependent variables for multiple regression analysis.
(c) Calls various subroutines to calculate means and standard deviations of dependent and independent variables, simple and multiple correlation coefficients, regression coefficients, t-values and analysis of variances for multiple regression.
(d) Prints the results.

The method is based on estimation of the regression coefficients by the least squares technique and involves computation of different statistical parameters such as mean, standard deviation, regression coefficients, correlation coefficients etc.
3.1 Parameters Estimation

The parameters or the regression coefficients are estimated by the method of least squares.

$$
\begin{equation*}
\sum_{i=1}^{N} \varepsilon_{i}^{2}=\sum_{i=1}^{N}\left(x_{1}-b_{1}-b_{2} x_{2} \ldots \ldots . b_{m} x_{m}\right)^{2} \tag{2}
\end{equation*}
$$

If $\sum_{i=1}^{N} \varepsilon_{i}^{2}$ is equal to Z, then m partial differential equations will be:

$$
\frac{\partial \mathrm{Z}}{\partial \mathrm{~b}_{1}}=0 ; \quad \frac{\partial \mathrm{Z}}{\partial \mathrm{~b}_{2}}=0 ; \ldots \ldots \ldots ;{\frac{\partial Z_{1}}{\partial \mathrm{~b}_{\mathrm{m}}}=0}=0
$$

The above m partial differential equations will have following m linear equations:

$$
\mathrm{b}_{2} \Sigma\left(\Delta \mathrm{X}_{2}\right)^{2}+\mathrm{b}_{3} \Sigma \Delta \mathrm{X}_{3} \Delta \mathrm{X}_{2}+\ldots \ldots+\mathrm{b}_{\mathrm{m}} \Sigma \Delta \mathrm{X}_{\mathrm{m}} \Delta \mathrm{X}_{2}=\Sigma \Delta \mathrm{X}_{1} \Delta \mathrm{X}_{2}
$$

$$
\mathrm{b}_{2} \Sigma \Delta \mathrm{X}_{2} \Delta \mathrm{X}_{3}+\mathrm{b}_{3} \Sigma\left(\Delta \mathrm{X}_{3}\right)^{2}+\ldots \ldots+\mathrm{b}_{\mathrm{m}} \Sigma \Delta \mathrm{X}_{\mathrm{m}} \Delta \mathrm{X}_{3}=\Sigma \Delta \mathrm{X}_{1} \Delta \mathrm{X}_{3}
$$

$$
\mathrm{b}_{2} \Sigma \Delta \mathrm{X}_{2} \Delta \mathrm{X}_{\mathrm{m}}+\mathrm{b}_{3} \Sigma\left(\Delta \mathrm{X}_{3} \Delta \mathrm{X}_{\mathrm{m}}\right)+\ldots \ldots+\mathrm{b}_{\mathrm{m}} \Sigma\left(\Delta \mathrm{X}_{\mathrm{m}}\right)^{2}=\Sigma \Delta \mathrm{X}_{1} \Delta \mathrm{X}_{\mathrm{m}}
$$

in which $\Delta X_{i}=X_{i}-\bar{x}$ with $i=1$ to m. The above equations enable the determination of m parameters $b_{1}, b_{2}, \ldots \ldots . b_{m}$ which are the estimates for $B_{1}, B_{2}, \ldots \ldots, B_{m}$. The parameters can be estimated with the help of matrices also as given below:

$$
\begin{align*}
& {[\mathrm{Y}]=[\mathrm{X}][\mathrm{B}] \text { for } \begin{array}{c}
\mathrm{N} \\
\mathrm{i} \underline{\underline{\Sigma}}_{1}
\end{array} \quad \varepsilon_{i}^{2}=0} \tag{4}\\
& \text { or }[\mathrm{X}]^{\mathrm{T}}[\mathrm{Y}]=[\mathrm{X}]^{\mathrm{T}}[\mathrm{X}][\mathrm{B}] \tag{5}\\
& \text { or }\left[\mathrm{X}^{T} \mathrm{X}\right]^{-1}[\mathrm{X}]^{\mathrm{T}}[\mathrm{Y}]=\left[\mathrm{X}^{\mathrm{T}} \mathrm{X}\right]^{-1}\left[\mathrm{X}^{\mathrm{T}} \mathrm{X}\right] \quad[\mathrm{B}] \tag{6}\\
& \text { or }[\mathrm{B}]=\left[\mathrm{X}^{\mathrm{T}} \mathrm{X}\right]^{-1}[\mathrm{X}]^{\mathrm{T}}[\mathrm{Y}] \tag{7}
\end{align*}
$$

where,
[B] : Matrix containing M regression coefficients
[X] : (NxM) matrix
[y$]$: (Nxl) matrix
3.2

Statistical Parameters

Various statistical parameters given in the output
are computed by the following equations in the programme:
a) Mean

$$
\begin{equation*}
\bar{x}_{j}=\frac{\sum_{i=1}^{N} x_{i j}}{N} \tag{8}
\end{equation*}
$$

where,

$$
\begin{aligned}
\mathrm{j} & =1,2, \ldots \ldots \ldots, m \\
\mathrm{~m} & : \text { Number of variables } \\
\mathrm{N} & : \text { Number of observations }
\end{aligned}
$$

b) Correlation coefficients

$$
\begin{equation*}
r_{j k}=\frac{S_{j k}}{\left(\sqrt{S_{j j}}\right)\left(\sqrt{S_{k k}}\right)} \tag{9}
\end{equation*}
$$

where,

$$
\begin{align*}
S_{j k}= & (1 / N) \quad\left(\sum_{i=1}^{N}\left(X_{i j}-T_{j}\right)\left(X_{i k}-T_{k}\right)\right. \\
& \left.\quad-{ }_{i=1}^{N}\left(X_{i j}-T_{j}\right){ }_{i=1}^{N}\left(X_{i k}-T_{k}\right)\right) \tag{10}\\
j= & 1,2, \ldots \ldots, m \\
k= & 1,2, \ldots \ldots, m \\
T_{j}= & \sum_{i=1}^{\sum_{l}} X_{i j} / m \tag{ll}
\end{align*}
$$

The temporary means T_{j} and T_{k} are used in the equation
(10) to obtain computational accuracy.
c) Standard deviation

$$
\begin{equation*}
S_{j}=\sqrt{S_{j j} / N-1} \tag{11}
\end{equation*}
$$

where,

$$
j=1,2, \ldots \ldots, m
$$

d) Regression coefficients

$$
\begin{equation*}
b_{j}=B_{j}\left(S_{y} / S_{j}\right) \tag{12}
\end{equation*}
$$

where,
b_{j} : Regression coefficient
B_{j} : Beta coefficient
S_{y} : Standard deviation of dependent variable
S_{j} : Standard deviation of $j^{\text {th }}$ independent variable
e) Beta coefficients
$B_{j}=\sum_{i=1}^{k}\left(r_{i y}\right)\left(r_{i j}\right)^{-1}$
where,
$r_{i y}$: Intercorrelation of $i^{\text {th }}$ independent variable with dependent variable
$r_{i j}^{-1}$: Inverse of intercorrelation $r_{i j}$
$i, j=1,2, \ldots, k$ imply independent variables
f) Standard error of regression coefficients

$$
\begin{equation*}
S_{b_{j}}=\sqrt{\frac{r_{j j}^{-1}}{D_{j j}}} \cdot S_{y}^{2} \cdot 1,2 \ldots \ldots, k \tag{14}
\end{equation*}
$$

where,

$$
\begin{aligned}
& D_{j j}: \text { Sum of squares of deviations from mean for } \\
& j^{\text {th }} \text { independent variable }
\end{aligned}
$$

$$
j=1,2, \ldots \ldots \ldots, k
$$

$S_{y .1,2 \ldots \ldots k}^{2}: \quad$ Mean sum of squares due to regression
g) t-values

$$
\begin{equation*}
t_{j}=\left(b_{j} / s_{b_{j}}\right) \tag{15}
\end{equation*}
$$

where,

$$
j=1,2, \ldots \ldots . \ldots, k
$$

h) Intercept
$\mathrm{b}_{0}=\overline{\mathrm{Y}}-\underset{i=1}{\mathrm{k}} \mathrm{b}_{\mathrm{j}} \overline{\mathrm{X}}_{\mathrm{j}}$
where,
$\overline{\mathrm{Y}}$: Mean of dependent variable
\bar{x}_{j} : Mean of $j^{\text {th }}$ independent variable
i) Multiple correlation coefficient
$R=\sqrt{R_{*}^{2}}$
where,
R : Multiple correlation coefficient
R_{*}^{2} : Coefficient of determination
Coefficient of determination R_{*}^{2} is calculated by the
following equation:

$$
\begin{equation*}
R_{*}^{2}=\sum_{i=1}^{k} \quad B_{i} r_{i j} \tag{18}
\end{equation*}
$$

where,
B_{i} : Beta coefficient
$r_{i y}$: Intercorrelation of $i^{\text {th }}$ independent variable with dependent variable
j) Analysis of variance for the multiple regression

The variance for the multiple regression analysis
is tested by the F-value given by :

F-value $=\frac{\text { Mean squares due to regression }}{\text { Mean squares from the regression }}$
k) Standard error of estimate

The positive square root of $\operatorname{Var}\left(\varepsilon_{i}\right)$ is known as
the standard error of estimate.
4.0 COMPUTER PROGRAMME

The programme consists of one main routine and five subroutine. The programme capacity can be changed by suitably changing the dimension statements.
4.1 Programme Subroutines

The multiple linear regression programme consists of the main routine named, MREG, a special input subroutine DATA and four other subroutines. The subroutines have been described below:
a) SUBROUTINE DATA (M,D)

The purpose of this subroutine is to read an observation from input device. This subroutine is called by subroutine CORRE and must be provided by the user. If size and location of data fields are different from problem to problem, this subroutine must be recompiled with a proper format statement. Various calling arguments are:

M : The number of variables in an observation
D : Output vector of length M containing the observation data
b) SUBROUTINE MINV (A, N, D, L, M)

The purpose of the subroutine is to invert a matrix. Various calling arguments are:

A : Input matrix, destroyed in computation and replaced by resultant inverse
$\mathrm{N}:$ Order of matrix A
D : Resultant determinant
L : Work vector of length N
M : Work vector of length N
c) SUBROUTINE CORRE (N,M,IO, X, XBAR, STD, RX, R,B,D,T)

This subroutine computes means, standard deviations, sums of cross products of deviations and correlation coefficients. Various calling arguments are:

N : Number of observations. N must be greater than or equal to 2 .
M : Number of variables, M must be greater than or equal to 1 .

IO : Option code for input data
0 if data are to be read in from input device in the special subroutine DATA

1 if data are already in core
X : If $I O=0$, the value of X is 0.0
if $I O=1, X$ is the input matrix (NXM) containing data

XBAR: Output vector of length M containing means
STD : Output vector of length M containing standard deviations

RX : Output matrix (MxM) containing sums of cross products of deviations from means

R : Output matrix containing correlation coefficients
B : Output vector of length M containing the diagonal of the matrix of sums of cross products of deviations from mean
D : Working vector of length M T : Working vector of length M
d) SUBROUTINE ORDER ($M, R, N D E P, K, I S A V E, R X, R Y)$

The purpose of this subroutine is to construct from larger matrix of correlation coefficients a subset matrix of intercorrelations among independent variables and a vector of intercorrelations of independent variableswith dependent variable. Various calling arguments are:

M : Number of variables and order of matrix R
R : Input matrix containing correlation coefficients. This subroutine expects only upper triangular portion of the symmetric matrix to be stored by column in R
NDEP : The subscript number of dependent variable $K \quad$: Number of independent variables to be included in the forthcoming regression analysis. This must be greater than or equal to one

ISAVE: Input vector of length $\mathrm{K}+1$, containing in ascending order the subscript numbers of K independent variables to be included in the forthcoming regression. Upon returning to the routine this vector contains, in addition, the subscript number of the dependent variable in K+1 position
RX : Output matrix (KxK) containing intercorrelations among independent variables to be used in forthcoming regression

RY : Output vector of length K containing intercorrelations of independent variables with dependent variable
e) SUBROUTINE MULTR (N,K,XBAR, STD, D, RX, RY, ISAVE, B, SB, T , ANS)

This subroutine performs multiple linear regression analysis for a dependent variable and a set of independent variables. Various calling arguments are:

N : Number of observations
K : Number of independent variables in the regression

XBAR : Input vector of length M containing means of all variables. M is the number of variables

STD : Input vector of length M containing standard deviations of all variables

D : Input vector of length M containing the diagonal of the matrix of sums of cross products of deviations from means of all variables

RX : Input matrix ($\mathrm{K} \times \mathrm{K}$) containing the inverse of intercorrelations among independent variables
: Input vector of length K containing intercorrelations of independent variables with dependent variable

ISAVE : Input vector of length $\mathrm{K}+1$ containing subscripts of independent variables in ascending order The subscript of the dependent variable is stored in the $\mathrm{K}+1$ position

B : Output vector of length K containing regression coefficients

SB : Output vector of length K containing standard deviationsof regression coefficients
T : Output vector of length K containing t-values
ANS : Output vector of length 10 containing following information:

ANS (l) : Intercept
ANS (2) : Multiple correlation coefficient
ANS (3) : Standard error of estimate
ANS (4) : Sum of squares attributable to regression (SSAR)

ANS (5) : Degreesof freedom associated with SSAR

ANS (6) : Mean squares of SSAR
ANS (7) : Sum of squares of deviations from regression (SSDR)

ANS (8) : Degreesof freedom associated with SSDR

ANS (9) : Mean squares of SSDR
ANS (10) : F value

The listing of the source programme has been given in appendix I.
4.2

Programme Modifications

Programme capacity can be increased or decreased by making changes in the dimension statements. Input data in a different format can also be handled by providing a specific format statement. The following are the general rules for programme modifications:
I. Changes in the dimension statements of the main programme MREG
a. The dimension of arrays XBAR, STD, D, RY, ISAVE, $B, S B, T$ and W must be greater than or equal to the number of variables M.
b. The dimension of array RX must be greater than or equal to the product of MxM .
c. The dimension of array R must be greater than or equal to $(M+1) M / 2$.
II. Changes in the input format statement of the special input subroutine DATA

The special input subroutine data is normally written by the user to handle different formats for different problems. The user may modify this subroutine to perform testing of input data, transforming of data and so on.

5.0 INPUT SPECIFICATIONS, OUTPUT DESCRIPTION AND RESTRICTIONS ON USE

5.1 Input Specifications

Input data file contains control cards, data cards and selection cards.
5.1.1 Control cards

In the first card the title of the problem is given in A format. In the second card the number of observations, number of variables and number of selections are given in free format.

5.1.2 Data cards

Since input data are read into the computer one obseryation at a time, each row of the data is given in one card in free format. If all the variables are not coming in one card, each row of data is continued on the second and third cards till the last data point comes in. However each row of data must be given in a new card. As indicated earlier the format for the data cards can be modified by the user.

5.1.3 Selection cards

The selection card is used to specify a dependent variable and a set of independent variables in multiple linear regression analysis.

Any variable in the set of original variables can be designated as a dependent variable and any number of remaining variables can be specified as independent variables. Selection of a dependent variable and a set of independent variables can be made as many times as desired. The selection card is prepared as follows:

Columns	Contents
1-2	Option code for table of residuals
	00 if it is not required
	01 if it is required
3-4	Dependent variable designated for the forth-
	coming regression analysis
5-6	Number of independent variables included in the
	forthcoming regression analysis
7-8	First independent variable included
9-10	Second independerıt variable included
Rest of	the columns are for other independent variable

5.2 Output Description

The output of the multiple linear regression analysis programme includes the followings:
a. Means
b. Standard deviations
c. Correlation coefficient between the independent variables and dependent variable
d. Regression coefficients
e. Standard error of regression coefficients
f. Computed t-values
g. Multiple correlation coefficient
h. Analysis of variance for the multiple regression
i. Standard error of estimate
6.0 TEST DATA

The programme for multiple regression analysis has been run on the data of sut zone 3 (f) (Lower Godavari Sub Zone) to relate unit hydrograph parameters to basin characteristics. The data has been taken from 'Flood Estimation Report for Lower Godavari Sub Zone (SUB ZONE -3f)' design office report No.3/1980. The data has been logarithmatically transformed to have linear relationships.

The following relationships have been derived by the regression analysis:
$t_{p}=0.3468\left(\frac{L L_{C}}{S}\right) 0.453$
Coefficient of correlation is 0.85560
$q_{p}=1.9527\left(t_{p}\right)^{-0.837}$
Coefficient of correlation is 0.93826
$W_{50}=2.333\left(q_{p}\right)^{-1.012}$
Coefficient of correlation is 0.97041
$W_{75}=1.3414\left(q_{p}\right)^{-1.020}$
Coefficient of correlation is 0.95832
(v) $\quad W_{R 50}=0.953 \quad\left(q_{p}\right)^{-1.078}$

Coefficient of correlation is 0.95832
(vi)
$W_{R 75}=0.5810\left(q_{p}\right)^{-1.035}$
Coefficient of correlation is 0.93073
where,
$t_{p}: \quad$ Basin lag
$q_{p}: \quad$ Unit peak discharge
W_{50} : Width of the representative unit hydrograph
at 50% of the peak of the hydrograph
W_{75} : Width at 75% peak flow
$W_{\text {R50 }}$: Width of rising limb at 50% of peak flow
$W_{\text {R75 }}$: Width of rising limb at 75% of peak flow
L : Length of mainstream in kilometers
L_{C} : Length of mainstream in kilometers from
gauging site to the centre of gravity of catchment in kilometers

S :
Statistical stream slope in meters per kilometer

8.0 APPLICATION, SAMPLE INPUT AND SAMPLE OUTPUT

The programme for multiple regression analysis has been run on the data of sub zone $3(f)$, (Lower Godavari Sub zone) to relate unit hydrograph parameters to basin characteristics. The data has been log transiormed to have linear relationships. Subroutine DATA can be modified accordingly.

8.1 Sample Input

The listing of sample input (data file) has been given in appendix II. Total number of observations, total number of variables and number of selections are 22,13 and 6 respectively. So in the first line title of the problem has been given. In the second line total number of observations, total number of variables and total number of selections are given in free format.

In the data lines A (catchment area in square kilometers) L, L_{C}, W_{C} (minimum width of the catchment through the centre of gravity of the catchment in kilometers), S, t_{p}, q_{p}, $W_{50}, W_{75}, W_{R 50}, W_{R 75},\left(L L_{C} / S\right)$ and q_{p} are given in the free format. Different options have been given in selection lines.
8.2 Sample Output

The listing of the sample output has been given in appendix III.

9.0 RECOMMENDATIONS

The programme for multiple regression analysis can deal with upto 40 variables (including both dependent and independent variables). Therefore if the number of variables involved in a problem are less than 40 , then the programme can be used as such. If there are more than 40 variables, the dimension statements in the main programme have to be modified. Input format in the subroutine DATA is also to be modified according to the problem.

1. Haan, C.T.(1972),'Statistical Methods in Hydrology', Iowa State University Press, Ames, Iowa.
2. Scientific Subroutine Package, International Business Machines, White Plains, N.Y.

APPENDIX I

MULTIPLE LINEAR REGRESŞION

c	MASTEP MULIIPLE REGSESEIOH
1	Fopmat (SOA1)
2	
3	
	उix, 7 HT UALUE:
4	
5	FOPMAT:104 nependent
\pm	
7	
8	
	1\}InH FFOM REGRESEIOH ', I6,2Fi6.3'
9	
10	Fornat (3652)
11	
12	FORM品(1H, [6,F15,5,2F14.5)
13	
14	
17	FDStat 13510.5)
C	SEAS PROELEM FARAMETEF CARI
100	REARSSEITSITLE
	WSITETSJITITLE
	10=0
	$x=0,0$
C	TEST MHEES OF SEIECTIONS
	IFhas)10851085109
108	
	60 T0 300
109	[10 $200 \mathrm{I}=1,4 \mathrm{HE}$
	WPITESE3)
c	
C	O IF TARSE IS HOT SEOUTEER
c	1 TF TARLF TS Wht foulden
c	HDEF..... nEPEMDEMT UASIAREE


```
    C. TEST EINGULARTSY NF GATRTY IMUERTER
        IF(nFT) 1123110,112
    110 4PITE{台14}
        60 Tก 200
```



```
E
```



```
C REGRESSTOM COEFFICEEMTS:AAM COMPUTER T-VALUSE
        ##m=k+1
        MeITE{6,3)
        n0 115 {=1gk
        {=ISAUE!{}
```



```
        MPITE{(心55)
        {=ISAVE(%m)
```



```
C STAMMARD ERSOS OF ESTIMATE
```



```
C FEIHT AMALYSIS OF UARIAMCE FOS SEGRESEION
        #PITE{6;7)
        {=ANE{S)
```



```
        L=N-1
```



```
        MSITE{E59} L.SU隹
        IF{HRESI) 200,200,120
C. PSINT TARLE TF RESIMUASS
    120 HSITE(6.2)I
    MSITE{公戈1}
    MM=15A得(K+1)
    n0 140 IT= 15N
```



```
    SU的=ANE{1}
    @0 130 {=1,k
    {=ISAUE{d}
```



```
140 WPITE{台;12} IS:W\Mm),SUM,NESI
    REMIHR 12
200 CONTIMUE
300 E0NTINUE
    stof
    ENM
    SURROUTIME RATACMSO%
    RIMEMSION \{1}
```

```
    1 FONMAT{13F10.3}
    C THIS SURROUTIAE IS CALLER BY SURROUTINE CORRE
```



```
        MO 10 I=1:M
```



```
    10 M{I)=ALOE{M{I)
```



```
        SETURN
        ENR
        SURROUTIME MINU(A)H,N:L,M)
        DIMENEION A{1)5{{1)SH{1)
    C SEARCH FON LARGEST ELEMENT
        n=1.0
        NK=-N
        n% 80 k=1,N
        NK=NK+5N
        {(%)=K
        #(k)=k
        KK=NK+%
        BIGA=A{KK
        n0 20, {=6,5%
        II=N*:( (1-1)
        n0 20 I-k:N
        Ij=1工&!
        IF(ARS{RIGA}-ARS(A{IS})) 15,20:20
        RI{A=A{I!}
        {(k)=1
        # (K)=?
        CONTINUEE
        c. IHTERCHANGE ROMS
        S={{K}
        IF{J-K) 35:35,25
        KI=k-k
        M0 50 I=1;H
        KI=kI年N
        HOLI=-A(KI)
        II=KI-K!f
        A(KI)=A(SI)
        A{\II)=HOLR
C INTESCHANGE COUUMHS
35 I=M(k)
        IF(I-k)45:45,38
```



```
        MO 40 {=1, H
        NK=NK+!
        SI= 3F+15
        MOLR=-A{SK}
        A(SK)=A{SI)
        A{SI}=H0{[
C BIUIDE COLUMAS BY MINUS FIUOT
```

```
    45
    46
    48
    5 0
55
C
80
62
65
C. SIUINE ROW BY FIVOT
    k, l=k-k
    @0 75 {=1, &
    kn=k.{+N
    IF(j-א)70,75,70
```



```
    CONTIMLIE
    FROLuET OF FIUOTE
    I=T4RIEA
C. SEFLACE PIUOT BY RECIFROCAL
    A(KK)=1,0/RIGA
80 contIMUE
C FIHAL NOU AHO COLU#% IMTERCHANGE
    K=N
100 K={ K-1)
    IF(k)150,150:105
105 I={{k;
    IF{J-K\120,120,108
    SO=N*:{k-1)
    }S=N*:\ (I-I)
    M0 110 s=1; M
    IK={目%}
    MOLR=A(S*)
```



```
    A{, 绍}=-A{{IS
110 A{{I}=HOL{
120 S=\{绎}
    IF{j-k}100,100,125
125 KI=K-k
    NO 130 I=1,%
```

$$
I-4 / 8
$$

```
    KT=KI % N
    MOLS=A隹I:
    II=KI-K!S
    A{kI)=-&{{I}
    130 ACII:=HOLB
    60 IT 100
    150 RETuRM
    EM!
```



```
    1@{1):T(1)
    C. INITIALISATIONS
    @N 300 s=1:多
    R{{}=0,0
    100 T(N)=0,0
```



```
    [0 }102 I=1, %
    R{I}=0.
    FH=N
    {=0
    IF(I0) 105:127,105
    #n) 10日 {-15%
    m: 107 I=1, 岁
    {={-$1
107 T(S)=T{{}+纤)
```



```
108 T{S)=5{S!/FM
    @0115 5:=154
    MK=0
    L=I-K
    30 110 {=1, 詆
    {={
```



```
    R{{}=R{{}+N{S}
    [m }{5 {=1:%
    M0 115 <-15,5
    3k={N+1
```



```
    G0 Tก 205
    IF(4-%) 130513051工5
    kK=宜
    00 T0 137
    k&=%
    M0 140 I=1; %k
    CALL SATASM%R:
    #0 140 {=1:%
```



```
    {={+1
    140 RY{L;=[4,S}
    FKK=&K
```

```
        MR 150,{=15%
        XRAR{d}=T {{}
    150 T{S}=T{S}/FKK
        {-0
        M0 180 I=1,kK
        M=0
        n0 170 {=1;多
        {-\&}
    170 [{({)=RX{L}-T(S)
        n0 180 t=1:m
```



```
        n0 180 k=1:S
        M=3k+1
```



```
        IF(M-K) 205,205,185
    18% KK=N-KK%
        no 200 I=1,%K
        NK=0
        EALL MSA作;R)
        \0 190 J=1:%
```



```
        M({)=N{(S)-T{{)
        R(S)=E{(J)+[MS\
        #0 200 . =1:5
        no 200 K=3:3
        NK=心+1
```



```
205 JK=0
        [0 210 J=1; M
        YRAR{{3)=YRAB{.{}/FN
        nO 210 k=1;\
        NK=W+1
    210 R{{K}=R{留}-R{J}*R{K}/FN
        熄=0
        nO 220 j=1;M
        \k=3k+\
220 STM(J)=S日RT(ARS(R{(K)))
        n0 230 {=1:M
        n0 230 k=,1;%
        NK={\{k*K-k}/2
        L=M*:{(-1)+K
        RX(L)={{祭}
        L=M*(K-1) + }
        RX(L)=R{血)
        IF{STR(J)*STN(K))225,222,225
        222 R{多}=0.0
            60 50 230
```



```
    230 CONTINUE
        FN=SRRT:FN-1,O)
```

```
    \0 240 s=1:5y
    STR{d)=STM{d}/FN
    i=-M
    M0 250 I=1,m
    {={+4}+1
    M{I}=8又({)
    RETUSN
    EMB
\varepsilon
```



```
    OIMEMSIOM R{1}:ISAUE{1%SQY(1).SY(1)
    MM=0
    {\{\mp@code{=1}
```



```
    IN \40 {=15%
    12=ISAUE{!}
    IF(NDEP-L2)122,12%5123
122 L=NDEF+(L22紅-12)/2
    {0 T0 125
    {={2&(ADEF*NDEF-NDEF)/2
    RY{dy=R任:
    m0 130 5=1,k
    {1=ISAUE{I;
    IF(11-{2)127,128,128
    {={1+{!2紋2-{2}/2
    60 50 120
128 {={?+{L}*L1-{1}/2
```



```
130 RX{集)=P{{}
120 FONHAT(10F12.6)
    MN=N4H+K
140 CONTIMUSE
150 FaSMaT(//10512+6)
    ISAUE{K+I}=KMES
    RETUSN
    ENB
C
```



```
    1R(1),SB{1),T(1);AME(1)
    My=k,\mp@code{1}
C RETA WEIGHTS
    IN 100 f=1sk
100
110
    g{j}=0,0
    10 150 s=1,k
    {1=k,:{.{-1}
    MO 110 I=13%
    L=L 1+I
    B{d}=R{d}+EYY{I)経({({)
    SM=O.O
```

```
        80=0.0
        LI=ISAUE{\Mf)
    C COEFFICIENTS OF RETERMSNATION
        \ก 120 I=1.%
```



```
    C. SEGRESSTOH COFFFECIENTS
        &=\SAUE{I:
```



```
C. IHTERCEFT
120 RO=RO+B(I)*KEAR彷)
        RO{=YRAR{{1}-BR
    C. SUH OF SNUARES ATTEIRUTARLE TO FEGSESSIOM
        SSAR=RM*R{{1}
    C. MULTIPLE COSSELATION COEFFICIEMT
    122 ת%=SgeT{ARE{多)
    C. SUM OF SNUANES DF IEvIATIDNS FROM REGRESSION
        SSBR=R{L1}-SSAS
    C VARIANEE OF ESSTIMATE
        FSN=N-K-3
        SY=SSDS/FH
C. STANDARI REUIATIONE OF REGRESSION CREFFICIENTS
        MO 130 {=1, % 
        {1=k*{ {-1}\}
        L=ISAUE{!
```



```
C COMPUTER T-VALUES
130 T{{=R({}/SR{J)
C STANMARR ESEOS OF ESTEMATE
135 SY=SgST{ARS{SY}
c. FUALUE
FK=K
SSARM=SSAR/FK
SSDRK=SSDR/FN
F=SSARM/SSNSH
AMS{1}=RO
ANE{2}=采
ANE{ふ):=S;
ANE{A}=SSAR
ANE{5)=F%
ANS{自}=SSARM
ANS{7)=SERE
ANS (8)=FN
AMS{9}=SSNPM
ANE{10)=F
RETUEN
EMR
```


APPENDIX II

TEST INPUT

UHIT HYRROGRAPH FARAMETERS WITH CATCHMEMT CHARACTERSTICS 22513.

TEST OUTPUT

```
GMIT HYDROERAFH FARAMETERS WITH CATCHMENT CHARACTESSTICS
        MUTIPLE REGEFSSIOM
        SELECTION...... 1
```

```
UASIARLE MEAM STAMDARG CORGELATIOH REGRESSIOH ETR, FFROS COHPUTED
```

UASIARLE MEAM STAMDARG CORGELATIOH REGRESSIOH ETR, FFROS COHPUTED
W0. nEUTATEOM X US Y COEFFIEAT OF REb,CHES, T UAEUE
W0. nEUTATEOM X US Y COEFFIEAT OF REb,CHES, T UAEUE
12 5.234 1.208 0.856 0.453 0.04% 7.30?
12 5.234 1.208 0.856 0.453 0.04% 7.30?
BEFEMDEMT
BEFEMDEMT
\& 1+314 0.639
\& 1+314 0.639
0
INTERCEFT -1.05t6
INTERCEFT -1.05t6
MUTIFLE CONSELATIOM O.85560
MUTIFLE CONSELATIOM O.85560
STR. ERPOF OF ESTIMATE 0.33907

```
STR. ERPOF OF ESTIMATE 0.33907
```

0 AMALYRE GF UARIANCE FOR REGEESIOH

SOURCE OF VARIATIDN	MESREES QF FFEEDRK	SUH nf SBUARES	MEAK SRUABES	F UA UE
ATTRIEUTAREE TO REGRESEION	1	6.282	6.282	54,643
	20	？．209	9，115	
T吅献	21	8.582		

 SEIECTIOA
 \(+\ldots+\ldots 2\)
 | UARIARLE | MEA ${ }^{\text {M }}$ | STAMBARE | COnSELATIDM | － | STR，EsROS | compurn |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N0． | | NFUSATITM | \％时 | EnfFEIEMS ？ | OF RES．COEF | T UAR 拖 |
| 6 | 1.314 | 0.639 | －9．938 | -0.837 | 0.049 | － 12.129 |

DEFEMREMT
$13 \quad-0.431 \quad 0.570$
0
IHTERCEFT 0.66922
MULTIFLE CORRELATIOA O.9T875
STR. ERROE DF ESTIMATE 0.20222
θ
GMALYSIS OF WARIANE FRE REGEESIOM

SOURCE ©F VASIATIDA	MEgREES	Suf ${ }^{\text {OF }}$	MEAM	F vatue
	OF FPEEMOM	Sgunese	SRUSAEES	
ATTRIRUTARLE TO REGSESEIMN	1	6.016	6.018	147＋115
MEVIATITM FPOM REGEESOTOH	20	0，818	a，0．91	

TOTAL
21
6.83A

MUMTIPIF REGRESSTDU
SELECTIOM $\ldots+\ldots 3$

SELECTIOM \qquad 4

```
            TOTAL
        MH.TEPLE GEGRESSION
    SELECTIOH...... S
```

```
VARIARLE MEAN STANDARD CORNELATION REGEESSION STI. FRODS COMSUIEN
```

VARIARLE MEAN STANDARD CORNELATION REGEESSION STI. FRODS COMSUIEN
HB. REUSATIOM X US Y CNFFF{EMY OF REG,CTFF. T UASUE
HB. REUSATIOM X US Y CNFFF{EMY OF REG,CTFF. T UASUE
13 -0.431 0.570 -0.958 -1.070 0.072 -15.00?
13 -0.431 0.570 -0.958 -1.070 0.072 -15.00?
REPEMREMT
REPEMREMT
10 0.417 0.642
10 0.417 0.642
0
0
INTERCEPT -0.04757
INTERCEPT -0.04757
MULTIPYE CORRELATION O.958J2
MULTIPYE CORRELATION O.958J2
STR, EPRDR OF ESTIMATE 0.1878Z
STR, EPRDR OF ESTIMATE 0.1878Z
0
AWALYSIS OF UANIANCE FGR REGRESEIOH

SUURCE DF VARIATION	MEgREES	SuM S_{5}	WEAM	F VAME
	DF FREEMOK	SRUSAES	SgUasEs	
ATTEIRUTARLE TO REGRESEION	1	7.740	7.940	225.956
[WYTATINS FROM REGRESSTOM	20	0.706	0.035	
TnTAL	21	8.tit		

 SELECTION....... &
    ```




```

 33 -0.431 0.570 -6.931 -1.035 0.093 - -11.301
    ```
    33 -0.431 0.570 -6.931 -1.035 0.093 - -11.301
REPENDEMT
REPENDEMT
    11 -0,097 0,624
    11 -0,097 0,624
0
0
    INTERCEPT -0.54284
    INTERCEPT -0.54284
    MULTIP{E ENRSELATIOM G.9307Z
    MULTIP{E ENRSELATIOM G.9307Z
    STR. ESROS OF ESTIMATE 0.23776
    STR. ESROS OF ESTIMATE 0.23776
0
ANAZYSTS ITF UAPIAMCE FDS REGEESSION
```

SOURCE OF UARIATION
ATFRIRUTARLE TO REGSESSIOH REUTATEnN FEnM REGOESETDS TOTAL

```
\begin{tabular}{|c|c|c|c|}
\hline IEGREES & Sun me & (1) ME盛 & F Un 维 \\
\hline OF FPFEnOM & Sguapes & SRUSABES & \\
\hline 1 & 7.323 & 7,323 & 129.534 \\
\hline 20 & 1.151 & 0.057 & \\
\hline 21 & 8. 454 & & \\
\hline
\end{tabular}
```

