DP-3

BEST FIT DISTRIBUTION USING NORMALIZATION PROCEDURES AND CHI-SQUARE CRITERION

- AND ARE MANAGE

MERCHENS.

S RAMASESHAN DIRECTOR

STUDY GROUP

S M SETH N K GOEL

NATIONAL INSTITUTE OF HYDROLOGY JAL VIGYAN BHAVAN ROORKEE-247 667(UP) INDIA

1982-83

CONTENTS

T	7	0	171
P	A	5	E

	Abstra	ct	1
	1.0	INTRODUCTION	l
	2.0	PURPOSE OF THE PROGRAMME	2
	3.0	METHOD USED	3
-	4.0	COMPUTER PROGRAMME	6
	5.0	INPUT SPECIFICATIONS, OUTPUT	9
1		DESCRIPTION AND RESTRICTIONS ON USE	
		5.1 Input Specifications	9
		5.2 Output Description	10
		5.3 Restrictions on Use	10
	6.0	TEST DATA	12
	7.0	EXAMPLE CALCULATIONS	13
	8.0	APPLICATION, SAMPLE INPUT AND	
		SAMPLE OUTPUT	15
	9.0	RECOMMENDATIONS	16
		REFERENCES	17
		APPENDICES	

ABSTRACT

The documentation of the computer programme for best fit distribution using normalization procedures and chisquare criterion includes listing of source programme, data file and output file with test data and example calculations. This also gives input specifications and output description. Various normalization procedures which have been used in the programme are: inverse Pearson type III transformation, log-normal transformation for which the parameters are estimated on the basis of theoretical relationships, log transformation, inverse log Pearson type III transformation, and square root transformation.

1.0 INTRODUCTION

Hydrologic data in its original form are rarely normally distributed. Many of the hydrologic data are positively skewed and so the application of normal distribution to the original data is not appropriate. However, transformation methods are available to transform the data to normal distribution. Various normalization procedures are available in practice. Many transformation procedures require the use of computer as the transformation procedure involved is cumbersome to apply with a calculator. Since the sample size of the hydrologic data generally available is limited, it is desirable to transform the data to normality using transformation procedures and select the best fitting normalization procedure based on some fitting criterion.

Log normal transformation, inverse Pearson type III transformation, square root transformation, inverse log Pearson type III transformation and Box-Cox (power) transformation etc. are some of the commonly used transformations for normalization.

Chi-square test, Kolmogorov-Smirnov test and Cramer-Von Mises test are some of the well known tests to judge the goodness of fit.

A computer programme developed by Dr M Krishnaswamy at I.I.T., Kanpur has been modified and improved after incorporating suitable changes. This report documents the modified computer programme.

2.0 PURPOSE OF THE PROGRAMME

The purpose of the programme is to find out best fitting distribution after testing various normalization procedures on the basis of chi-square statistic for different seasons/ months of the year. The programme compares the following normalization procedures:

- a. Normal distribution by method of moments
- b. Inverse Pearson type III transformation
- c. Log normal transformation (parameters are obtained on the basis of theoretical relationships)
- d. Log transformation (parameters are estimated by method of moments)
- e. Inverse log Pearson type III transforamtion
- f. Square root transformation

The programme calculates the number of degrees of freedom and can be applied to data sets other than weekly/ monthly/seasonal time series.

A company of protocolday devictoped to be N Relating stand or

3.0 METHOD USED

- i. The programme first sorts out the data for a particular season. In the case of time series of monthly data the programme sorts out the data for each month while in the case of weekly data, the data for each week is separated.
- ii. The programme arranges the seasonal data in descending order.
- iii. Various transformations are tested on this arranged data, which are as follows:
 - a. Normal distribution by method of moments:
 The data as such is compared with the normal distribution.
 - Inverse Pearson type III transformation:
 The following equation is used to normalize the data:

$$Y = \left\{ \left(\frac{C_s}{2} \quad \left(\frac{X - \mu}{\sigma} \right) + 1 \right)^{1/3} - 1 \right\} \frac{6}{C_s} + \frac{C_s}{6}$$

where,

х	:	Original series
μ	:	Mean of the original series
σ	:	Standard deviation of original series
Cs	:	Coefficient of skewness of original
		series

Y: Pearson type III transformed series

c. Log normal distribution (parameters estimation on the basis of theoretical relationships): Parameters of the log transformed series are calculated on the basis of following theoretical relationships:

$$\mu_{y} = \log (\mu_{x}) - 0.5 \log \{ (\sigma_{x}/\mu_{x})^{2} + 1 \} \dots (2)$$

$$\sigma_{y} = \{ \log ((\sigma_{x}/\mu_{x})^{2} + 1) \}^{\frac{1}{2}} \dots (3)$$

where,

		Mean of the original series
σx	:	Standard deviation of the original series
		Mean of log transformed series
σy	:	Standard deviation of the log transformed
		series

...(4)

The parameters so obtained are used for the calculation of chi-square statistic.

d. Log transformation:

 $Y = \log X$

where,

- Y : Log transformed series
- X : Original series
- e. Inverse log Pearson type III transformation:
 In inverse log Pearson type III transformation log transformed series is used instead of original

series. Rest of the procedure for transformation is similar to that for inverse Pearson type III transformation.

f. Square root transformation:

In this procedure square root of the original series is used as transformed series.

- iv. After computing the statistical parameters of the transformed series, the programme calculates the chisquare statistic for the transformation. Number of degrees of freedom is also calculated.
- v. The chi-square value so obtained can be compared with critical chi-square value for desired significance level and calculated number of degrees of freedom. The transformation giving the least chi-square value is considered to be the best for that season/month/ week data set.

vi. Steps i to v are repeated for other seasons.

4.0 COMPUTER PROGRAMME

The computer programme for best fit distribution consists of one main routine and ten subroutines. The subroutines have been described below:

i. SUBROUTINE NDTRI (P, X, C, IER)

The purpose of this subroutine is to calculate standard normal variate corresponding to a given probability. The calling arguments are:

P : Input probability

- X : Output argument such that P = Y = the probability that the random variable is less than or equal to 0.0
- C : Output density function F(X)
- IER: Output error code

IER = -1; if P is not in the interval (0,1)
IER=0; if there is no error

ii. SUBROUTINE MSS (X,AMEAN,STDEV, SKEW) This subroutine calculates mean, standard deviation and coefficient of skewness of the given series. Various calling arguments are: X : Given series AMEAN: Mean of the series STDEV: Standard deviation of the series SKEW : Coefficient of skewness of the series This subroutine calculates chi-square and degrees of freedom for a transformation. Various calling arguments are:

X : Given series

- AMEAN: Mean of the series, calculated from subroutine MSS
- STDEV: Standard deviation of the series, calculated from subroutine MSS
- SKEW : Coefficient of skewness of the series calculated from subroutine MSS
- THF : Theoretical frequency of each class
- T : Standard normal variate
- iv. SUBROUTINE NORMAL (CX, L, THF, T, AMEAN, STDEV, SKEW)

This subroutine analyses for normal distribution. The calling arguments are:

CX : Input series

L : Number of years

THF : Theoretical frequency

T : Standard normal variate

AMEAN: Mean

STDEV: Standard deviation

SKEW : Coefficient of skewness

v. SUBROUTINE PT3 (CX, L, THF, T, AMEAN, STDEV, SKEW) This subroutine analyses inverse Pearson type III transformation.

- vi. SUBROUTINE LNC (CX, L, THF, T, AMEAN, STDEV, SKEW) This subroutine analyses log normal distribution for which parameters are calculated on the basis of theoretical relationships.
- vii. SUBROUTINE LN (CX, L, THF, T, AMEAN, STDEV, SKEW) This subroutine analyses log transformation. The parameters are calculated by method of moments.
- viii. SUBROUTINE LP3 (CX, L, THF, T, AMEAN, STDEV, SKEW) This subroutine analyses inverse log Pearson type III transformation.
- ix. SUBROUTINE SQRTT (CX, L, THF, T, AMEAN, STDEV, SKEW) This subroutine analyses square root transformation.

x. SUBROUTINE SORTX (N, X)

This subroutine sorts out the data in descending order. The calling arguments are:

N : Total number of observations in the seriesX : Series to be arranged in descending order

Note: Various calling arguments in subroutines PT3, LNC LN, LP3, AND SQRTT are same.

5.0 INPUT SPECIFICATIONS, OUTPUT DESCRIPTION AND RESTRICTIONS ON USE

5.1 Input Specifications

Input cards/lines have been divided in two parts:

a. Job cards

b. Data cards.

5.1.1 Job cards

Card	Variable	Description	Format
FIRST	TITLE	Title of the problem	A
SECOND	N	Total number of observations	Free
	NS	Number of seasons in a year	
	NCLAS	Number of classes for the	
		calculation of chi-square	
THIRD	Nl	Option code for normal	Free
		distribution	
	N2	Option code for inverse	
		Pearson type III transformation	
	N3	Option code for log normal dis-	
		tribution (parameters on the	
		basis of theoretical relation-	
		ships)	
	N4	Option code for log transformati	on 🖕

Option code for inverse log N5 Pearson type III transformation Option code for square root N6 transformation

If any of the transformation is not required 0 is given corresponding to its option code, otherwise 1 is given.

5.1.2 Data cards

Observations are punched till end in the free format.

5.2 Output Description

The following statistics are printed for the desired transformation(s) for all the seasons:

Statistics

Format

Mean of the transformed series	F8.3
Standard deviation of the transformed series	F8.3
Coefficient of skewness of the transformed	
series	F8.3
Chi-square	F8.3
Number of degree of freedom	15

5.3 Restrictions on Use

The number of classes should be chosen in such a 1. way that at least 5 observations are there in each class.

- 2. The number of data points should not be more than 500. However, if the number of data points is more, the dimension statements of the programme can be changed accordingly.
- 3. The data should be continuous, without any gap.
- 4. The observations for a season should be independent.
- 5. The deficiencies of chi-square criterion are associated with the programme too.

6.0 TEST DATA

The programme was run on 38 years monthly data of river Lakshmanatirtha for different options. The values of N, NS, NCLAS, N1, N2, N3, N4, N5 and N6 are given as described below:

N =	$38 \times 12 = 456$
NS =	12 (since data is monthly)
NCLAS =	6 (for NCLAS = 6, the theoretical
	frequency of each class will be 5.83)
Nl =	1
N2 =	1
N3 =	1
N4 =	1
N5 =	1
N6 =	1

(The best fitting distribution is required as such values of N1, N2, N3, N4, N5, N6 have been given as 1).

7.0 EXAMPLE CALCULATIONS

The statistical parameters of inverse log Pearson type III transformed series and square root transformed series for season 1 are given under:

(I) Inverse log Pearson type III transformation:

Standard deviation =	1.010
Coefficient of skewness = -	-0.173
Chi-square =	4.000
No. of degrees of freedom =	3

(II) Square root transformation:

Mean	-	3.652
Standard deviation	=	2.326
Coefficient of skewness	=	2.606
Chi-square	=	20.7368
No. of degrees of freedom	=.	3

(Inverse log Pearson type III transformation and square root transformations have been chosen just to show the calculations of transformed series).

The chi-square values for normal distribution, Pearson type III distribution, log normal distribution (parameters on the basis of theoretical relationships), log normal distribution, log Pearson type III distribution and square root distribution are 69.0526, 2.7368, 2.1053, 3.3684, 4.0000, 20.7368 respectively. From standard tables, the critical value of chi-square at 95% probability level and for 3 degrees of freedom is 7.81. On the basis of chi-square statistic the data for month 1 can be assumed to fit Pearson type III distribution or log normal distribution or log Pearson type III distribution. However, the chi-square is minimum in case of log normal distribution (for which the parameters are estimated on the basis of theoretical relationships), it can be assumed that log normal distribution is best fitting distribution for data of month 1.

the court

8.0 APPLICATION, SAMPLE INPUT AND SAMPLE OUTPUT

The programme has been run on 38 years monthly data of river Lakshmanatirtha for various transformations. The listings of the source programme, data file and output file have been given in Appendix I, Appendix II and Appendix III. On VAX-11/780 computer system the run time statistics for the programme is as follows:

a. Compilation time	= 12.7 seconds
b. Linking time	= 2.47 seconds
c. Run time	= 3.60 seconds

9.0 RECOMMENDATIONS

The programme for best fit distribution using normalisation procedures and chi-square criterion can be used for any type of seasonal hydrologic data e.g. daily, pentad, ten daily, monthly or annual. It can also be applied to other data sets. The data should be continuous without any gap. The observations across the year should be independent. The programme has been implemented and tested on VAX-11/780 computer system. The programme can be run on any other system also with simple FORTRAN instructions and with minor or no modifications.

REFERENCES

- 1. Krishnaswamy, M (1979), 'Computer Programme for Best Fit Distribution Using Normalization Procedures and Chi-square Criterion', Indian Institute of Technology, Kanpur (unpublished).
- 2. Haan, C.T. (1977), 'Statistical Methods in Hydrology' Iowa State University Press, Ames, IOWA.

APPENDIX I

	PROGRAMME FOR BEST FIT DISTRIBUTION USING NORMALISATION PROCEDURES AND CHI-SQUARE CRITERION
С	PROGRAM TO TEST VARIOUS NORMALIZATION PROCEDURES ON THE
С	DASIS OF CHI SQUARE
C	N1 STANDS FOR NORMAL DISTRIBUTION
3	N2 STANDS FOR PEARSON TYPE J DISTRIBUTION
С	N3 STANDS FOR LOGNORMAL DISTRIBUTION PARAMETERS ARE ESTIMATED
C	ON THE BASIS OF THEORETICAL RELATIONS
С.,	N4 STANDS FOR LOGNORMAL DISTRIBUTION
C	NS STANDS FOR LOGPEARSON DISTRIBUTION
C.	N& STANDS FOR SQUARE ROOT DISTRIBUTION
0	IF ANY OF THE TRANSFORMATION IS NOT REQUIRED GIVE O CORROS
C	FONDING TO THAT TRANSFORMATION
	DIMENSION TITLE(80),KX(500),THF(100),FL(100),T(100),CX(500)
	1,CX1(500),CX2(500)
	COMMON/BL1/L
	COMMON/BK1/N1,N2;N3;N4;N5;N6
	COMMON/BL2/NCLAS
	REAL XX
	OFEN(UNIT=1+FILE='GOEL.BAT'+STATUS='OLB')
	OPEN(UNIT=2:FILE='GOEL.OUT':STATUS='NEW')
80	FORMAT(80A1)
18	FORMAT(1X:80A1)
14	FORMAT(1X,12F7,1)
1001	FORMAT(' TOTAL NO. OF VALUES=',16/' NO.OF SEASONS PER YEAR=',16
11225	1/' NCLAS=',I6)
1002	FORMAT(11H INFUT DATA/12(1H#)/)
	READ(1,80) TITLE
	WRITE(2,81) TITLE
118	READ(1:*) N:NS:NCLAS
C	N IS THE TOTAL NO. OF OBSERVATIONS
C	NS IS THE ND. OF SEASONS PER YEAR
0	NCLAS IS THE NO. OF CLASSES REQUIRED FOR CHI
C	SQUARE CALCULATION: THIS DEPENDS UPON THE NO.
C	OF VALUES PER YEAR
	REAB(1+#)H1+N2+N3+N4+N5+N6
	WRITE(2,1001) N,NS,NCLAS
	READ(1:#) (KX(I):I=1:N)
	4RITE(2,1002)
	WRITE(2:14) (KX(I):I=1:N)
	NFT=NCLAS+1 L=N/NS
	FL(1)=0.0
	FL(NFT)=0.9999
5	DO 5 I=2;NCLAS FL(I)=FLOAT(I-1)/FLOAT(NCLAS)
	CALCULATE STANDARISED VARIATES CORRESPONDING TO LIMITS OF
C C	SELECTER CLASS INTERVALS
-£2	RO SSS I=1;NPT
	FFL=FL(I)
	CALL NDTRI(FFL;AX;C;IER)
555	$\Gamma(\Sigma) = AX$

С	CALCULATE THEORETICAL FREQUENCY FOR EACH CLASS
68	DO 68 I=1;NCLAS THF(I)=FLOAT(L)/FLOAT(NCLAS)
	J=1
100	NO 15 I=1+L
	II=(I-1)*NS+3
	CX(I) = KX(II)
15	CX2(I)=CX(I) CX1(I)=CX(I)
777	WRITE(2:40).
40	FORMAT(20X; ANALYSIS FOR SEASON'; 4X; 15/20X; 19(1H#)/)
	WRITE(2:10)(CX(I):I=1:L)
10	FORMAT(3X,10F7.1)
	CALL SORTX(L,CX)
	WRITE(2,20)
20	FORMAT(3X, 'SHORTED RECORDED DATA')
	WRITE(2:10)(CX(I):I=1:L)
	CALL NORMAL(CX;L;THF;T;AMEAN;STDEV;SKEW)
	CALL PT3(CX,L,THF,T,AMEAN,STDEV,SKEW) CALL LNC(CX1,L,THF,T,AMEAN,STDEV,SKEW)
	CALL LN(CX1+L+THF+T+AHEAN+STREV+SKEW)
	CALL LP3(CX1:L:THF:T:AMEAN:STDEV:SKEW)
	CALL SGRTT(CX2,L,THF,T,AMEAN,STDEV,SKEW)
	t ≠L = ا
	IF(J.GT.NS)60 TO 200
	GO T0100
200	STOP
С	END NORMAL DISTRIBUTION
~	SUBROUTINE NORMAL(CX:L:THF:T:AMEAN:STREV:SKEW)
÷	RIMENSION CX(500), THF(100), T(100)
	COMMON/BK1/N1+N2+N3+N4+N5+N6
	IF(N1)500,100,500
500	WRITE(2,1003)
1003	FORMAT(33H ANALYSIS FOR NORMAL DISTRIBUTION)
	CALL MSB(CX; AMEAN; STREV; SKEW)
100	CALL CSS(CX; AMEAN; STDEV; SKEW; THF; T)
100	RETURN
С	E ND
	END FEARSON TYPE 3 DISTRIBUTION BY BEARD NORMALIZATION
~	
	PEARSON TYPE 3 DISTRIBUTION BY BEARD NORMALIZATION
~	PEARSON TYPE 3 DISTRIBUTION BY BEARD NORMALIZATION SUBROUTINE PT3(CX;L,THF,T,AMEAN,STDEV;SKEW)
U	<pre>FEARSON TYPE 3 DISTRIBUTION BY BEARD NORMALIZATION SUBROUTINE PT3(CX:L:THF:T:AMEAN:STDEV:SKEW) COMMON/BK1/N1:N2:N3:N4:N5:N6 DIMENSION CX(500):THF(100):T(100) IF(N2:E0:0)80T0 100</pre>
v	PEARSON TYPE 3 DISTRIBUTION BY BEARD NORMALIZATION SUBROUTINE PT3(CX,L,THF,T,AMEAN,STDEV,SKEW) COMMON/BK1/N1,N2,N3,N4,N5,N6 DIMENSION CX(500),THF(100),T(100) IF(N2,EQ.0)GOTO 100 IF(N1,EQ.0)GO TO 200
	PEARSON TYPE 3 DISTRIBUTION BY BEARD NORMALIZATION SUBROUTINE PT3(CX:L:THF:T:AMEAN:STDEV:SKEW) COMMON/BK1/N1:N2:N3:N4:N5:N6 DIMENSION CX(500):THF(100):T(100) IF(N2:E0:0)60T0 100 IF(N1:E0:0)60 T0 200 60 T0 300
200	<pre>FEARSON TYPE 3 DISTRIBUTION BY BEARD NORMALIZATION SUBROUTINE PT3(CX:L:THF:T:AMEAN:STDEV:SKEW) COMMON/BK1/N1:N2:N3:N4:N5:N6 DIMENSION CX(500):THF(100):T(100) IF(N2:E0:0)GOTO 100 IF(N1:E0:0)GOTO 200 GO TO 300 CALL MSS(CX:AMEAN:STDEV:SKEW)</pre>
200 300	<pre>FEARSON TYPE 3 DISTRIBUTION BY BEARD NORMALIZATION SUBROUTINE PT3(CX:L:THF:T:AMEAN:STDEV:SKEW) COMMON/BK1/N1:N2:N3:N4:N5:N6 DIMENSION CX(500):THF(100):T(100) IF(N2:E0:0)60T0 100 IF(N1:E0:0)60T0 200 60 T0 300 CALL MSS(CX:AMEAN:STDEV:SKEW) WRITE(2:25)</pre>
200	<pre>FEARSON TYPE 3 DISTRIBUTION BY BEARD NORMALIZATION SUBROUTINE PT3(CX:L:THF:T:AMEAN:STDEV:SKEW) COMMON/BK1/N1:N2:N3:N4:N5:N6 DIMENSION CX(500):THF(100):T(100) IF(N2:E0:0)GOTO 100 IF(N1:E0:0)GOTO 200 GO TO 300 CALL MSS(CX:AMEAN:STDEV:SKEW)</pre>

	OVER TOVERS ANTARY CEDEN
	CX(J)=(CX(J)-AMEAN)/STDEV
	CX(J)=(SKEW#CX(J))/2.0+1.0
	IF(CX(J))507,507,508
507	CX(J)=(-1,)*(ABS(CX(J)))**(1,/3,)
	GB TB 509
508	CX(J)=CX(J)**(1+/3+)
509	CX(J)=(6,/SKEW)*(CX(J)-1,)+(SKEW)/6,
725	CONTINUE
	CALL MSS(CX; AMEAN, STREV, SKEW)
	CALL CSS(CX, AMEAN, STDEV, SKEW, THF, T)
100	RETURN
200	ENB
С	LOGNORMAL DISTRIBUTION PARAMETERS ESTIMATED BY CHOW'S METHOD
12 I	SUBROUTINE LNC(CX,L,THF,T,AMEAN,STDEV,SKEW)
	COMMON/BK1/N1+N2+N3+N4+N5+N6
	DIMENSION CX(500), THF(100), T(100)
	IF(N3.E8.0)60 TO 100
	IF(N1.EG.0)G0 TO 300
	IF(N2.E8.1)60 TO 300
	GOTO 500
300	CALL MSS(CX; AMEAN; STDEV; SKEW)
500	WRITE(2:25)
25	FORMAT(1X, 'CHOW METHOD FOR LOGNORMAL DISTRIBUTION')
	VAR=(STREV/ANEAN)**2+1.0
	AMEAN=ALOG(AMEAN)-0.5*ALOG(VAR)
	STREV=ALOG(VAR)
	STDEV=SQRT(STDEV)
	NG 60 I=1+L
	IF(CX(I),EQ.0.0)CX(I)=1.
60	CX(I)=ALOG(CX(I))
	CALL MSS(CX, AMEAN1, STDEV1, SKEW1)
	CALL CSS(CX; AMEAN; STDEV; SKEW1; THF; T)
100	RETURN
	END
с 3	LOG TRANSFORMATION
	SUBROUTINE LN(CX,L,THF,T,AMEAN,STDEV,SKEW)
	COMMON/RK1/N1+N2+N3+N4+N5+N6
	DIMENSION CX(500), THF(100), T(100)
	IF(N4.E8.0)60 TO 100
	IF(N3.E8.0)60 T0 200
	68 T8 500
000	00 70 Job
200	IG 20 I - I C IF(CX(I),EQ.0.)CX(I)=1.
20	CX(I) = ALOG(CX(I))
20	
500	WRITE(2:1012)
1012	FORMAT(1X,19H LOG TRANSFORMATION)
	CALL MSS(CX, AMEAN, STDEV, SKEW)
	CALL CSS(CX; AMEAN; STDEV; SKEW; THF; T)
100	RETURN
	END

С	LOG PEARSON TYPE 3 DISTRIBUTION
	SUBROUTINE LF3(CX,L,THF,T,AMEAN,STDEV,SKEW)
	COMMON/BK1/N1,N2,N3,N4,N5,N6
	DIMENSION CX(500), THF(100), T(100)
	IF(N5.E0.0)60 TO 100
	IF(N3.ER.0.AND.N4.ER.0)GOTO 200
	60 TO 500
200	DO 20 I=1+L
-	IF(CX(I).EQ.0.)CX(I)=1.0
20	CX(I)=ALOG(CX(I))
	CALL MSS(CX; AMEAN; STDEV; SKEW)
500	DO 728 J=1+L
	CX(J)=(CX(J)-AMEAN)/STDEV
	CX(J)=(SKEW*CX(J))/2.0+1.0
107	IF(CX(J))607,607,608
607	CX(J)=(-1,)*(ABS(CX(J)))**(1,/3,)
100	GC TC 609
608	CX(J)=CX(J)**(1./3.)
609	CX(J)=(6,/SKEW)*(CX(J)-1,)+(SKEW)/6,
728	CONTINUE
1007	WRITE(2:1023)
1023	FORMAT(1X, 'LOG PEARSON TYPE 3 DISTRIBUTION')
	CALL MSS(CX: AMEAN: STREV: SKEW)
100	CALL CSS(CX; AMEAN; STDEV; SKEW; THF; T)
100	RETURN
	END SQUARE ROOT TRANSFORMATION
С	SUBROUTINE SORTT(CX:L:THF:T:AMEAN:STREV:SKEW)
	COMMON/BK1/N1:N2:N3:N4:N5:N6
	DIMENSION CX(500) +THF(100) +T(100)
	IF(N6)500,100,500
500	R0 123 I=1+1
000	IF(CX(I),LE.0,)CX(I)=0,1
123	CX(I)=SQRT(CX(I))
770	WRITE(2,1020)
1020	FORMAT(26H SQUAREROOT TRANSFORMATION)
7070	CALL MSS(CX+AMEAN+STREV+SKEW)
	CALL CSS(CX; AMEAN, STREV, SKEW, THF, T)
100	RETURN
400	END
С	CALCULATE AND TYPE SEASONAL STATISTICAL PARAMETERS
r.	SUBROUTINE MSS(X; AMEAN; STREV; SKEW)
	DIMENSION X(500)
	COMMON/BL1/
	SUM=0.
	R0 2 I=1;L
2	SUM=SUM+X(I)
	AMEAN=SUM/L
	SUM1=0.
	SUM2=0.

	DO 4 I=1,L
	SUM1=SUM1+(X(I)-AMEAN)**2
4	SUM2=SUM2+(X(I)-AMEAN)##3 -
	STDEV=SQRT(SUM1/(L-1))
	SKEW=(L*SUM2)/((L-1)*(L-2)*STDEV*STDEV*STDEV)
	RETURN
	END
6	CALCULATE CHI SQUARE AND NO. OF DEGREE OF FREEDOM
	SUBROUTINE CSS(X, AMEAN, STDEV, SKEW, THF, T)
	COMMON/BL2/NCLAS
	COMMON / BL1 /L
	DIMENSION X(500), THF(100), T(100), FREQ(100)
	DO 78 I=1+NCLAS
78	FRER(I)=0.
	R0:259 I=1:L
	AMINF=AMEAN+STDEV#T(2)
	H=1
61	IF(X(I)-AMINP)62,62,63
100000	FREQ(M)=FREQ(M)+1.0
62	
	60 10 59
63	IF(M-NCLAS)501,62,501
501	M=M+1
	AMINP=AMEAN+STDEV*T(M+1)
	60 TO 61
59	CONTINUE
c	CALCULATE CHI-SQUARE STATISTIC AND NO. OF DEGREES OF FREEDOM
5	
	CHIS=0.
	BO 69 I=1+NCLAS
.59	CHIS=CHIS+((ABS(FREQ(I)-THF(I))))##2/THF(I)
	NDF=NCLAS=3
	WRITE(2,1004)AMEAN, STDEV, SKEW, CHIS, NDF
1004	FORMAT(7X; 'MEAN', 2X, 'STD, DEVIATION', 2X, 'COEF.OF SKEW', 2X
	1, CHI SQUARE 1,2X, DEGREE OF FREEDOM 1/5X, F9.3, 2X, F9.3
	2.6%, F8.3, 5%, F8.4, 4%, I5)
	RETURN
	END
С	
C	***************************************
C	
ē	SURROUTINE NDTRI
C	0//00325
C	COMPUTES X=P**(-1)(Y), THE ARGUMENT X SUCH THAT Y=P(X)
0	CURFUILD AFFAATTININ THE DAUDDERN A DOOR THAT THE
C	=THE PROBABILITY THAT THE RANDOM VARIABLE U.DISTRIBUTED
3	NORMALLY(0,1), IS LESS THAN OR EQUAL TO X. F(X), THE
С	ORDINATE OF THE NORMAL BENSITY, AT X, IS ALSO COMPUTED.
С	
c	USAGE
č	CALL NETRI(P,X,C,IER)
С	

1.	REPORTATION OF LAWAWEIEWE
С	P - INPUT PROBABILITY
С.	X -OUTPUT ARGUMENT SUCH THAT P=Y=THE PROBABILITY THAT
С	THE RANDOM VARIABLE IS LESS THAN OF EQUAL TO X
C	C -OUTPUT DENSITY, F(X)
ς.	IER -OUTPUT ERROR CODE
C	=-1 IF P IS NOT IN THE INTERVAL (0,1), INCLUSIVE
3	X=C=.99999E+37 IN THIS CASE
€.	=C IF THERE IS NO ERROR
C.	SEE REMARKS BELOW
C.	REMARKS
3	MAXIMUM ERROR IS 0.00045
C.	IF P=0,X IS SET TO -(10) ##74.D IS SET TO C
0	IF F=1,X IS SET TO (10) ##74.B IS SET TO C
C	SUBROUTINES AND SUBPROGRAMS REQUIRED
0	NONE
0	METHOR
c	BASED ON APPROXIMATIONS IN C.HASTINGS, "APPROXIMATIONS
c	FOR DIGITAL COMPUTERS (PRICETON UNIV. PRESS, PRINCETON,
3	N.J., 1955, SEE EQUATION 26.2.23, HAND BOOK OF MATHEMAICAL
C	FUNCTIONS; ABRAMOWITZ AND STEGUN; DOVER PUBLICATIONS; INC.,
C	NEW YORK.
	SUBROUTINE MOTRI(P,X,D,IE)
	IE=C
	X=,999995+37
	R=X
	IF(F)1,4,2
1	IE=-1
	60 TO 12
2	IF(P-1.0)7,5,1
4	X=-0.999999E437
5	B=0.0
-	60 TO 12
7	R=P
10	IF(B-0.5)9,9,8
8	R=1+Q-R
9	T2=AL06(1.0/(R*R))
	T=SQRT(T2)
	X=T-(2.515517+0.802853#T+0.010328#T2)/(1.0+1.432788#T+
	10.189269#12+0.001308#1#12)
	IF(P-0.5)10,10,11
10	X=-X
11	B=0,3989423#EXP(-X#X/2.0)
12	RETURN
	END
	SUBROUTINE SORTX (N.X)
C.	SORTS IN BECREASING ORDER, X(I)=LARGEST
	RIMENSION X(100)
	K=N-1
	DO 2 L=1.K
	Art w An In - A 2 33

M=N-L DO 2 J=1:M XF (X(J)-X(J+1)) 1:1:2 XT=X(J) X(J)=X(J+1) X(J+1)=XT CONTINUE RETURN END

3

2

17

APPENDIX II

TEST INPUT

112		CIMEN	THE LEWY										
56	· 12+6	\$											
51	,1,1,	1,1											
	8	10	11	12	16	7	962	630	808	135	4	2	
	7	6	4	6	4	437	1537	867	132	138	49	6	
	23	17	10	8	9	2	1534	813	23	169	19	4	
	А	9	4	7	9	347	1006	299	105	475	2	0	
	1	0	0	0	0	0	1625	1178	248	316	72	2	
	6	10	6	6	101	747	2764	1496	195	125	923	74	
	52	23	- 13	7	18	641	2207	1527	290	626	9	51	
	6	15	5	15	59	270	2878	1462	425	160	4	4	
	36	9	7	3	180	375	3529	520	329	601	379	20	
	13	14	20	13	16	22	2209	884	63	167	97	11	
	5	14	23	10	3	8	1956	718	133	156	5.	1	
	9	2	1	3	5	535	2017	2962	840	253	679	240	
	39	28	92	23	14	2	1128	873	748	803	10	25	
	14	10	3	13	52	773	1569	3203	434	62	40	17	
	6	7	5	9	15	290	1004	1003	349	98	8	5	
	5	8	8	6	5	54	2210	1134	1036	286	30	12	
	13	16	17	17	30	186	1287	629	47	240	16	16	
	17	18	18	15	16	137	620	509	666	362	14.	14	
	17	16	12	12	12	206	3416	3121	249	482	33	14	
	5	14	13	7	25	418	2142	1636	192	479	13	· 24	
	17	8	7	7	257	609	560	160	328	451	93	Ε	
	8	8	3	2	15	414	2921	1390	162	559	355	15	
	14	13	20	9	411	642	2822	1193	118	186	292	20	
	.12	7	7	39	366	171	4513	1330	905	360	147	33	
	13	14	14	14	44	889	8746	1760	1700	373	188	70	
	10	17	27	46	113	197	2014	1433	92	50	315	15	
	9	3	15	24	428	1316	15019	4112	1256	1128	566	293	
	188	113	69	140	726	37	3623	2305	1010	2171	258	310	
	76	73	55	24	32	154	1726	1158	272	257	20	25	
	11	17	11	16	40	51	1712	6246	592	831	291	30	
	28	36	39	41	44	13	2463	239	26	9	5	13	
	5	7	12	5	15	1	634	394	101	118	83	20	
	19	16	4	3	15	598	2041	1560	77	27	4	4	
	2	0	Q	3	9	94	1819	1398	104	55	3	7	
	2	0	0	0	26	18	1880	1251	320	31	46	14	
	5	4,	4	8	26	280	712	891	69	1069	205	21	
	18	11	9	9	41	1362	763	424	200	123	21	5	
	3	4	4	5	331	72	1723	292	212	453	. 54	55	
	her	0.00		1.00		a) 200	0.100/01/01/01/01						

MONTHLY STREAMFLOW DATA OF RIVER LAKSHMANATIRTHA 45 1 5

APPENDIX III

TEST OUTPUT

MONTHLY STREAMFLOW DATA OF RIVER LAKSHMANATIRTHA TOTAL NO. OF VALUES= 456 NO.OF SEASONS PER YEAR= 12 NCLAS= 6 INFUT DATA *******

8.0	10.0		12.0	15.0					135.0		2.0
7.0	6.0	4.0		4.0					138.0		6.0
4.0	17.0	10.0	8.0	9.0	2.0	1534.0	813.0	23.0	169.0	19.0	4.0
4.0	9.0	4.0	7.0	9+0	347.0	1006.0	299.0	105.0	475.0	2.0	0.0
1.0	0.0	0.0	0.0	0.0	0.0	1625.0	1178.0	248.0	316.0	72.0	2.0
6.0	10.0	6.0	6.0	101.0	747.0	2764.0	1496.0	195.0	125.0	923.0	74.0
52.0	23.0	13.0	7.0	18.0	641.0	2207.0	1527.0	290.0	626.0	9.0	51.0
6.0	15.0	5.0	15.0	59.0	270.0	2878.0	1462.0	425.0	160.0	4.0	4.0
36.0	9.0	7.0	3.0	180.0	375.0	3529.0	520.0	329.0	601.0	379.0	20.0
13.0	14.0	20.0	13.0	16.0	22.0	2209.0	884.0	63.0	167.0	97.0	11.0
5.0	14.0	23.0	10.0	3.0	8.0	1956.0	718.0	133.0	156.0	5.0	1.0
9+0	2.0	1.0	3.0	5.0	535.0	2017.0	2962+0	840.0	253.0	679.0	240.0
39.0	28.0	92+0	23.0	14.0	2.0	1128.0	873.0	748.0	803.0	10.0	25.0
14.0	10.0	3.0	13.0	52.0	773.0	1569.0	3203.0	434.0	62.0	40.0	17.0
6.0	7.0	5.0	9.0	15.0	290.0	1004.0	1003.0	349.0	98.0	8.0	5.0
5.0	8.0	8.0	6.0	5.0	54.0	-2210.0	1134.0	1036.0	286.0	30.0	12.0
13.0	16.0	17.0	17.0	30.0	186.0	1287.0	629.0	47.0	240.0	16.0	16.0
17.0	18.0	18.0	16.0	16.0	137.0	620+0	903.0	666+0	362.0	14.0	14.0
17.0	16.0	12.0	12.0	12.0	206.0	3416.0	3121.0	249.0	482.0	33.0	14.0
-5.0	14+0			25.0	418.0	2142.0	1636.0	192.0	479.0	13.0	24.0
17.0	8.0	7.0	7.0	257.0	609.0	560.0	160.0	328.0	451,0	93.0	3.0
8.0	8.0	3.0	2.0	15.0	414.0	2921+0	1390.0	162.0	559.0	355.0	15.0
14.0	13.0	20.0	9.0	411.0	642.0	2822.0	1193.0	118.0	186.0	292+0	20.0
12.0	7.0	7.0	39.0	366+0	171.0	4513.0	1330.0	905.0	360.0	147.0	33.0
13.0	14.0	14.0	14.0	44.0	889.0	8746.0	1760.0	1700.0	373.0	188.0	70.0
10.0	17.0 -	27+0	46+0	113.0	197.0	2014.0	1433.0	92.0	50.0	315.0	15.0
9.0	3.0	16.0		428.0	1316.03	15019.0	4112.0	1256.0	1128.0	566.0	293.0
188.0	113.0	69+0	140.0	726+0	37+0	3653.0	2305.0	1010.0	2171.0	258+0	310.0
76.0	73.0	55.0	24.0	32.0	154.0	1726+0	1158.0	272.0	257.0	20.0	25.0
11+0	17+0	11.0	16+0	40.0	51.0	1712.0	6246.0	592.0	831.0	291+0	30.0
28.0	36+0	39.0	41.0	44.0	13.0	2463.0	239.0	26.0	9.0	5.0	13.0
5.0	7.0	12.0	5.0				394.0				20+0
19.0	16.0	4.0	3.0	. 15.0	598.0	2041.0	1560.0	77.0	27.0	4+0	4,0
2.0	0+0	0+0	3.0	9+0	94.0	1819.0	1398.0	104.0	55.0	3.0	7.0
2+0	0.0		0.0				1251.0		31.0	46.0	14.0
	4.0	4.0	8.0	26.0	280.0	712+0	891.0	69.0	1069.0	205.0	21.0
18.0	11.0						424.0	200.0	123.0	21.0	5.0
3.0	4+0	4.0	5.0	331.0	72+0	1723.0	292.0	212.0	453.0	54.0	55.0
		ANA	LYSIS F	OR SEAS	SON	1					
		***	****	****	K.#.#.						

8.0	7.0	4.0	4.0	1.0	6.0	52.0	6.0	36.0	13.0
5.0	9+0	39.0	14.0	6.0	5.0	13.0	17.0	17.0	5.0

17.0 8.0 14.0 12.0 13.0 10.0 9.0 188.0 76.0 11.7 5.0 19.0 2.0 2.0 5.0 18.0 3.0 28.0 SHORTED RECORDED DATA 188.0 76.0 52.0 39.0 36.0 28.0 19.0 18.0 17.0 17.0 17.0 14.0 14.0 13.0 13.0 13.0 12.0 11.0 10.0 9.0 9.0 8.0 8.0 7.0 6.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0 4.0 4.0 3.0 2.0 2.0 1.0 ANALYSIS FOR NORMAL DISTRIBUTION MEAN STD. DEVIATION COEF.OF SKEW CHI SQUARE DEGREE OF FREEDOM 31,924 4,428 69,0526 3 18.605 PEARSON TYPE 3 DISTRIBUTIN MEAN STD. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 0.274 0.840 -0.096 2.7368 3 CHOW METHOR FOR LOGNORMAL BISTRIBUTION MEAN STR. REVIATION CREF.OF SKEW CHI SQUARE DEGREE OF FREEDOM 2,237 1,171 0,474 2,1053 Z LOG TRANSFORMATION MEAN STD. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 2.310 1.028 0.474 3.3684 3 LOG PEARSON TYPE 3 DISTRIBUTION MEAN STD. DEVIATION COEF.OF SKEW CHI SQUARE DEGREE OF FREEDOM 1.010 -0.173 4.0000 3 0.001 SQUAREROOT TRANSFORMATION MEAN STR. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 3.652 2.326 2.606 20.7368 3 ANALYSIS FOR SEASON 2 ***** 10.0 6.0 17.0 9.0 0.0 10.0 23.0 15.0 9.0 14.0 14.0 2.0 28.0 10.0 7.0 8.0 16.0 18.0 16.0 14.0 8.0 8.0 13.0 7.0 14.0 17.0 3.0 113.0 73.0 17.0 36.0 7.0 16.0 0.0 0.0 4.0 11.0 4.0 SHORTED RECORDED DATA 113.0 73.0 36.0 28.0 23.0 18.0 17.0 17.0 17.0 16.0 16.0 16.0 15.0 14.0 14.0 14.0 14.0 13.0 11.0 10.0 10.0 10.0 9.0 9.0 8.0 8.0 8.0 7.0 7.0 7.0 6.0 4.0 4.0 3.0 2.0 0.0 0.0 0.0 ANALYSIS FOR NORMAL DISTRIBUTION MEAN STR. DEVIATION COEF.OF SKEW CHI SQUARE DEGREE OF FREEDOM 3 15.711 20.446 3,653 34,9474 PEARSON TYPE 3 DISTRIBUTIN MEAN STD. DEVIATION COEF. OF SKEW CHI SOUARE DEGREE OF FREEDOM 1,121 -0,781 20,4211 3 0.077 CHOW METHOD FOR LOGNORMAL DISTRIBUTION MEAN STD. DEVIATION COEF. OF SKEW CHI SQUARE BEGREE OF FREEDOM 5.5789 3 2.259 0.995 -0.408 LOG TRANSFORMATION MEAN STD. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 2,283 1,016 -0,408 5,8947 3 LOG PEARSON TYPE 3 DISTRIBUTION

MEAN	STR. DEVIATIO	N COEF	+OF SKE	U CHI	SQUARE	DEGREE	OF FF	EEDOM
	1 1.011		0.242		8.7368	3	¢	
	RANSFORMATION			and the second s				
	STR. DEVIATIO						OF FF	EEDOM
3,47;			1,595			3		
			SEASON	•	E			
	\$.\$.\$.\$.\$.\$.\$.	****	****					
11.0	A 0 10 0	* *	0.0		47.0	m	-	
	1.0 92.0	4+0 - 7 0	0.0 5 A	0+0	13+0	5.0	7.0	and the second sec
7.0	3.0 20.0	7 0	SA D	27 0	21+6	10-0	12+11	12,000
39.0 1	12.0 4.0	0.0	1710	27+0	10+0	07+0	55.0	11.0
SHORTED REC		2.4.2	10 F W	-9 F.C	7 + 0	4 F (J		
	9.0 55.0	39.0	27.0	23.0	20.0	20.0	10 0	17.0
	4.0 13.0			12.0	11 0	11.0		
8.0	7.0 7.0	7.0			5.0		4.0	
4.0	4.0 3.0	3.0	1.0	0.0	0.0	D D	3+0	4+0
ANALYSIS FOR	NORMAL DISTR	BUTTON	tr			040		
	TD. DEVIATION			CHI	SOUARE	DEGREE	DE FR	FEDOM
15.079								F 7 7 . 7 . 7 . 3
PEARSON TYPE	3 DISTRIBUTIN	4		4- 5				
MEAN S	TD. DEVIATION	COEF,	OF SKEW	CHI	SQUARE	REGREE	DE EE	FEDOM
	1,055					3		E E E E E E F F F F F F F F F F F F F F
CHOW METHOD F								
MEAN S	TD. DEVIATION	COEF.	OF SKEW	CHI	SQUARE	DEGREE	OF FR	EEROM
2+230	0,983		0.132	1	+4737	E		
LOG TRANSFOR								
HEAN S	TD. DEVIATION	COEF,	OF SKEW	CHI	SQUARE	DEGREE	OF FRE	EEDOM
2,143	1+118	-	0.132	3	.0526	3		
LOG PEARSON T								
MEAN S	TD. DEVIATION	COEF.	OF SKEW	CHI	SQUARE	DEGREE	OF FRE	EDOM
-0,001	1.000	-	0.005	3	+ 6842.	3		
SQUAREROOT TR								
MEAN S	TR. REVIATION	COEF.	OF SKEW				OF FRE	E BOM
3,333	2.022					3		
	ANALYSI				4			
	****	A. K. A. A. A. A. A. A.	****					
12.0	5.0 8.0	7.0	0.0	<	7 0			
- 1720 S	3.0 23.0					15.0		
	2.0 9.0			16.0			12,0	
	5.0 3.0			8.0	9.0		24.0	16.0
SHORTED RECO		010	0.00	10 Y Y	1.60	0+0		
140.0 40		39.0	24.0 2	4.0	23.0	17.0	16.0	16.0
15.0 14				2.0		9+0		10+0
8.0 6						6.0	6.0	5.0
5.0 3	5.0 3.0				0.0	0.0		~ r v
ANALYSIS FOR N								
MEAN ST	B. DEVIATION	COEF .	OF SKEW	CHI	BOUARE	DEGREE (OF FRE	EDOM
	23,373		4.388			3	and the Wilder	

PEARSON TYPE 3 DISTRIBUTIN MEAN STR. REVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM -0,428 0.204 0.975 6.5263 3 CHOW METHOD FOR LOGNORMAL DISTRIBUTION MEAN STD. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 2,145 1,090 0.093 4.4316 3 LOG TRANSFORMATION MEAN STD. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 2.210 1.008 0.093 9.0526 3 LOG PEARSON TYPE 3 DISTRIBUTION MEAN STD. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 1,000 0.000 -0.030 5.8947 3 SQUAREROOT TRANSFORMATION MEAN STD. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 8,7368 3,393 2.018 2.112 Z ANALYSIS FOR SEASON 5 ****** 16.0 4.0 9.0 9.0 0.0 101.0 18.0 59.0 180.0 15.0 5.0 14.0 52.0 15.0 5.0 30.0 16.0 12.0 3.0 25.0 257.0 15.0 411.0 366.0 44.0 113.0 428.0 726.0 32.0 40.0 44.0 15.0 15.0 9.0 26.0 26.0 41.0 331.0 SHORTED RECORDED DATA 726.0 428.0 411.0 366.0 331.0 257.0 180.0 113.0 101.0 59.0 52.0 44.0 44.0 41.0 40.0 32.0 30.0 26.0 26.0 25.0 16.0 16.0 16.0 15.0 15.0 15.0 15.0 14.0 12.0 18.0 9.0 9.0 9.0 5.0 5.0 4.0 3.0 0.0 ANALYSIS FOR NORMAL DISTRIBUTION MEAN STR. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 92.842 159.090 2.484 38.7368 E PEARSON TYPE 3 DISTRIBUTIN MEAN STR, DEVIATION COEF. OF SHEW CHI SQUARE DEGREE OF FREEDOM 0.174 0.714 1,685 37,4737 X CHOW METHOD FOR LOGNORMAL DISTRIBUTION MEAN STB. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 3.846 1.171 0.306 15.3684 3 LOG TRANSFORMATION MEAN STR. BEVIATION COEF.OF SKEW CHI SQUARE BEGREE OF FREEDOM 1,515 3,408 3,6842 0,306 7 LOG PEARSON TYPE 3 DISTRIBUTION MEAN STR. REVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 0.001 0.999 0.022 5.8947 3 SQUAREROOT TRANSFORMATION MEAN STR. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 7.343 1.610 30.5263 3 6.323 ANALYSIS FOR SEASON 3 ****** 7.0 437.0 2.0 347.0 0.0 747.0 641.0 270.0 375.0 22.0 8.0 535.0 2.0 773.0 290.0 54.0 186.0 137.0 208.0 418.0

III--4/9

609.0 414.0 642.0 171.0 889.0 197.0 1316.0 37.0 154.0 51.0 1.0 598.0 94.0 18.0 280.0 1362.0 72.0 13.0 SHORTED RECORDED DATA 1362.0 1316.0 889.0 773.0 747.0 642.0 641.0 609.0 598.0 535.0 437.0 418.0 414.0 375.0 347.0 290.0 280.0 270.0 205.0 197.0 186.0 171.0 154.0 137.0 94.0 72.0 54.0 51.0 37.0 22.0 7.0 2.0 2.0 1.0 0.0 18.0 13.0 8.0 ANALYSIS FOR NORMAL DISTRIBUTION MEAN STB. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 1.401 25.1579 X 351,967 325,658 PEARSON TYPE 3 DISTRIBUTIN MEAN STR. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 0.034 2,4211 3 0.916 0.627 CHOW METHOD FOR LOGNORMAL DISIRIBUTION MEAN STD. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 3 18.2105 5.399 0.880 -1.010 LOG TRANSFORMATION MEAN STB. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 2.045 16.3158 3 -1.010 4.698 LOG PEARSON TYPE 3 DISTRIBUTION MEAN STD. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 0.943 -0.544 5,8947 3 -0.019 SQUAREROOT TRANSFORMATION MEAN STD. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 10,125 0,320 1,7895 3 15.028 ANALYSTS FOR SEASON 7 *************

962.0 1537.0 1534.0 1006.0 1625.0 2764.0 2207.0 2878.0 3529.0 2209.0 1956.0 2017.0 1128.0 1569.0 1004.0 2210.0 1287.0 620.0 3416.0 2142.0 560.0 2921.0 2822.0 4513.0 8746.0 2014.015019.0 3653.0 1726.0 1712.0 2463.0 634.0 2041.0 1819.0 1880.0 712.0 763.0 1723.0 SHORTER RECORDED DATA 15019.0 8746.0 4513.0 3653.0 3529.0 3416.0 2921.0 2878.0 2822.0 2764.0 2463.0 2210.0 2209.0 2207.0 2142.0 2041.0 2017.0 2014.0 1956.0 1880.0 1819.0 1726.0 1723.0 1712.0 1625.0 1569.0 1537.0 1534.0 1287.0 1128.0 1006.0 1004.0 962.0 763.0 712.0 634.0 620.0 560.0 ANALYSIS FOR NORMAL DISTRIBUTION MEAN STB. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 3,839 32,4211 E. 2455.816 2536.997 PEARSON TYPE 3 DISTRIBUTIN MEAN STD. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 3 0.047 1,160 -0.630 32,1053 CHOW METHOD FOR LOGNORMAL DISTRIBUTION MEAN STD. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 0.662 12,5263 E 7.443 0.852 LOG TRANSFORMATION MEAN STD. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 4.0000 3 7.541 0.677 0.662 LOG PEARSON TYPE 3 DISTRIBUTION

MEAN STD. DEVIATION COEF.OF SKEW CHI SQUARE DEGREE OF FREEDOM 1.018 0.000 -0.202 4,0000 3 SQUAREROOT TRANSFORMALION MEAN STR. DEVIATION LOEF.OF SKEW CHI SQUARE DEGREE OF FREEDOM 46.097 18,434 2.342 10.6316 3 ANALYSIS FOR SEASON В ****** 630.0 867.0 813.0 299.0 1178.0 1496.0 1527.0 1462.0 520.0 884.0 718.0 2962.0 873.0 3203.0 1003.0 1134.0 629.0 903.0 3121.0 1635.0 160.0 1390.0 1193.0 1330.0 1760.0 1433.0 4112.0 2305.0 1158.0 6246.0 239.0 394.0 1560.0 1398.0 1251.0 891.0 424.0 292.0 SHORTED RECORDED DATA 6246.0 4112.0 3203.0 3121.0 2962.0 2305.0 1760.0 1636.0 1560.0 1527.0 1496.0 1462.0 1433.0 1398.0 1390.0 1330.0 1251.0 1193.0 1178.0 1158.0 1134.0 1003.0 903.0 891.0 884.0 873.0 867.0 813.0 718.0 630.0 629.0 520.0 424.0 394.0 299.0 292.0 239.0 160.0 ANALYSIS FOR NORMAL DISTRIBUTION MEAN STR. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 1405.105 1189.506 2.330 16.9474 3 PEARSON TYPE 3 DISTRIBUTIN MEAN STD. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM -0.145 1,396 -1,220 9.0526 · 2 CHOW METHOD FOR LOGNORMAL DISTRIBUTION MEAN STD. REVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 6.978 0.735 -0.226 4.3158 - X LOG TRANSFORMATION MEAN STD. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 6.963 0.783 -0.225 3,3684 3 LOG PEARSON TYPE 3 DISTRIBUTION MEAN STR. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM -0.001 1.001 0.027 5,2632 2 SQUAREROOT TRANSFORMATION MEAN STD. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 34.958 13,712 1.092 7.7895 2 ANALYSIS FOR SEASON 9 ****** 808.0 132.0 23.0 105.0 248.0 195.0 290.0 425.0 329.0 63.0 133.0 840.0 748.0 434.0 349.0 1036.0 47.0 666.0 249.0 192.0 328.0 162.0 118.0 905.0 1700.0 92.0 1256.0 1010.0 272.0 592.0 26.0 101.0 77.0 104.0 320.0 69.0 200.0 212.0 SHORTER RECORDED DATA 1700.0 1256.0 1036.0 1010.0 905.0 840.0 808.0 748.0 666.0 592.0 434.0 425.0 349.0 329.0 328.0 320.0 290.0 272.0 249.0 248.0 212.0 200.0 195.0 192.0 162.0 133.0 132.0 118.0 105.0 104.0 101.0 92.0 77.0 69.0 63.0 47.0 26.0 23.0 ANALYSIS FOR NORMAL DISTRIBUTION MEAN STR. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 390.947 391.405 1.584 33.0526 T

PEARSON TYPE 3 DISTRIBUTIN MEAN STR. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 0.052 0.883 0.799 4.6316 3 CHOW METHOD FOR LOGNORMAL DISTRIBUTION MEAN STD. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 5,621 0,833 -0.205 7,4737 3 LOG TRANSFORMATION MEAN STD. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 5,475 1,068 -0.205 2.1053 X LOG PEARSON TYPE 3 DISTRIBUTION MEAN STD. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM -0.062 2.1053 3 -0.001 0.999 SQUAREROOT TRANSFORMATION MEAN STD. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 9.072 0.787 4.3158 3 17.630 ANALYSIS FOR SEASON 10 **** 135.0 138.0 169.0 475.0 316.0 125.0 626.0 160.0 601.0 167.0 156.0 253.0 803.0 62.0 98.0 286.0 240.0 362.0 482.0 479.0 451.0 559.0 186.0 360.0 373.0 50.0 1128.0 2171.0 257.0 831.0 9.0 118.0 27.0 55.0 31.0 1089.0 123.0 453.0 SHORTED RECORDED DATA 2171.0 1128.0 1069.0 831.0 803.0 626.0 601.0 559.0 482.0 479.0 475.0 453.0 451.0 373.0 362.0 360.0 316.0 286.0 257.0 253.0 240.0 186.0 169.0 167.0 160.0 156.0 138.0 135.0 125.0 123.0 118.0 98.0 62.0 55.0 50.0 31.0 27.0 9.0 ANALYSIS FOR NORMAL DISTRIBUTION MEAN STB. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 378.526 409.130 2.633 27.0526 Ξ PEARSON TYPE 3 DISTRIBUTIN MEAN STR. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 3 -0.158 1.359 -0.864 7,7395 CHOW METHOD FOR LOGNORMAL DISTRIBUTION MEAN STR. DEVIATION CREF. OF SKEW CHI SQUARE REGREE OF FREEDOM 5.549 0.880 2.4211 X -0.642 LOG TRANSFORMATION MEAN STD. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 5,423 1,132 -0,642 1,7895 3 LOG PEARSON TYPE 3 DISTRIBUTION MEAN STD. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM -0.002 1.005 0.065 0.8421 X SQUAREROOT TRANSFORMATION MEAN STD. DEVIATION COEF.OF SKEW CHI SQUARE DEGREE OF FREEDOM 8,988 1,031 4,0000 17,317 3 ANALYSIS FOR BEASON 11 ****** 4.0 49.0 19.0 2.0 72.0 923.0 9.0 4.0 379.0 97.0 5.0 679.0 10.0 40.0 8.0 30.0 16.0 14.0 33.0 13.0

93.0 355.0 292.0 147.0 188.0 315.0 566.0 258.0 20.0 291.0 5.0 83.0 4.0 3.0 46.0 205.0 21.0 54.0 SHORTER RECORDER DATA 923.0 679.0 566.0 379.0 355.0 315.0 292.0 291.0 258.0 205.0 188.0 147.0 97.0 93.0 83.0 72.0 54.0 49.0 46.0 40.0 33.0 30.0 21.0 20.0 19.0 16.0 14.0 13.0 10.0 9.0 8.0 5.0 5.0 4.0 4.0 4.0 3.0 2.0 ANALYSIS FOR NORMAL DISTRIBUTION MEAN STD. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 140.842 209.713 2.183 43.4737 3 PEARSON TYPE 3 DISTRIBUTIN MEAN STR. DEVIATION COEF. OF SKEW CHI SQUARE BEGREE OF FREEDOM 3 0.116 0.792 1.211 36.8421 CHOW METHOD FOR LOGNORMAL DISTRIBUTION MEAN STR. REVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 4.363 3.081 0.018 22,6316 T LOG TRANSFORMATION MEAN STD. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 3.750 1.734 0.018 3.0526 3 LOG PEARSON TYPE 3 DISTRIBUTION HEAN STR. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 0.000 1.000 0.010 3.0526 3 SQUAREROOT TRANSFORMATION MEAN STD. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 1,120 21,6842 3 7,591 9,205 12 ANALYSIS FOR SEASON ****** 2.0 6.0 4.0 0.0 2.0 74.0 51.0 4.0 20.0 11.0 5.0 12.0 16.0 14.0 14.0 24.0 1.0 240.0 25.0 17.0 15.0 20.0 33.0 70.0 15.0 293.0 310.0 25.0 30.0 3.0 13.0 20.0 4.0 7.0 14.0 21.0 5.0 55.0 SHORTED RECORDED DATA 310.0 293.0 240.0 74.0 70.0 55.0 51.0 33.0 30.0 25.0 25.0 24.0 21.0 20.0 20.0 20.0 17.0 16.0 15.0 15.0 14.0 14.0 14.0 13.0 12.0 11.0 7.0 6.0 5.0 5.0 4.0 4.0 4.0 3.0 2.0 2.0 1.0 0.0 ANALYSIS FOR NORMAL DISTRIBUTION MEAN STB. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 74,327 3,026 44,7368 2 39.342 PEARSON TYPE 3 DISTRIBUTIN MEAN STR. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 2,134 23,5789 3 0.271 0.621 CHOW METHOD FOR LOGNORMAL DISTRIBUTION MEAN STD. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 3 2,913 1,233 0,247 9.6842 LOG TRANSFORMATION MEAN STD. DEVIATION COEF. OF SKEW CHI SQUARE DEGREE OF FREEDOM 2,682 1,382 0,247 - 4,9474 3 LOG PEARSON TYPE 3 DISTRIBUTION

MEAN STD.	DEVIATION	COEF.OF SKEW	CHI SQUARE	DEGREE OF FREEDOM
0.001	1.000	-0.005	12,5263	3
SQUAREROOT TRANS	FORMATION			
MEAN STD.	DEVIATION	COEF.OF SKEW	CHI SQUARE	DEGREE OF FREEDOM
4.863	4.015	2,125	20,1053	3