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PREFACE

Assumption of isotropy of the porous medium is commonplace in solving groundwater flow
problems. However, it may not be always advisable to rely up on such simplifying assumption
as field experience shows that, soils are anisotropic to certain extent. In groundwater flow
modelling practices also, anisotropic aquifer systems are modelled as near-isotropic ones.
A reason behind this tendency is due to the fact that most of the commercially available
groundwater flow models are based on rather simplistic assumptions of isotropy or pseud-
anisotropy. Further, parameters like the components in the hydraulic conductivity tensor are
to be estimated from the field in case of anisotropic flow computations. Nevertheless,
approximating an anisotropic medium to an isotropic one may introduce emors in the
computation of flow and estimation of groundwater balance. The present report summarises
relevant aspects on the theory of anisotropic flow in porous media and reviews methodology
for computing hydraulic potentials in such a medium. Further, computation of hydraulic
potentials are carried out in variety of unconfined aquifer systems with different orientations
of the soil strata and levels of anisotropy. This report is deemed to be of worth as
investigations on hydraulic potentials or flow in anisotropic aquifer systems are not abundant
in the literature. It is hoped that groundwater hydrologists may find it useful.

The study has been conducted and reported by Mr, Mathew K. Jose with the guidance of Dr.
G.C. Mishra as part of the work programme of the Ground Water Modelling and Conjunctive
~ Use Division of the Institute during 1998-99.
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DIRECTOR
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ABSTRACT

Most of the theoretical analyses of groundwater flow problems are based upon the
assumption of isotropy and homogeneity of the porous medium. But field experience
reveals the fact that soils are anisotropic to some extent, in general. Anisotropy can be
due to stratification in an aquifer which might have taken piace as a result of particle
orientation during formative stages. Quite often, an anisotroplc aquifer system is
approximated to an isotropic one and solutions are attempted using flow models which
generally assume a Cartesian coordinate system. However, anisotropic flow systems can
not be solved with the Cartesian coordinate domain. Approximating an anisotropic
medium to an isotropic one may introduce errors in the computation of flow and/ or heads
as groundwater flow through anisotropic soils is complex by nature. Besides, general rules
applicable to methods for isotropic conditions like flow-net analysis are no longer valid in
an anisotropic medium since the directions of flow and hydraulic gradient in such a
medium need not be parallel as in the case of an isotropic aquifer. Review of literature
shows that investigations on hydraulic potentials or flow in anisotropic aquifer systems are
not extensive. This report summarises related aspects on the theory of anisotropic flow in
porous media and reviews methodology for computing hydraulic potentials in an
unconfined aquifer system. An algorithm has been devised by applying appropriate
transformation techriques for anisotropic domain and analytical results. Numericai
experiments have been performed using the algorithm to compute hydraulic potentials in
certain hypothetical anisotropic aquifer systems. A number of cases have been studied
with different coefficients of anisotropy for the aquifer as well as angles inclination of the
bedding planes of the soil strata. The simulated hydraulic potentials in the anisotropic
domain are depicted as equipotentiai lines in vertical sections.
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1.0 INTRODUCTION

Generally, theoretical analyses of groundwater flow problems assume the porous medium to
be isotropic and homogeneous with respect to hydraulic conductivity. But, field experience
and iaboratory tests indicate that most soils are anisotropic to some degree. Layered soil
formations like sedimentary rocks and loess exhibit anisotropic behaviour, Stratification in
such formations may have resuited from particle orientation.

The effect of anisotropy on groundwater flow through certain geologic formations such as
alluvial and sedimentary soils has been of particular concern to groundwater hydrologists as
the directions of flow and of the hydraulic gradient in an anisotropic porous medium are not
parallel (Marcus, 1962).

1.1 BASIC CONCEPTS

In groundwater problems the soil body is considered to be a continuous medium of many
interconnected openings which serve as the fluid carrier (Hamr, 1962). Darcy's law governs
fluid flow in the porous medium which is represented as:

= - A
g=-x 22 (1)

where y [LT"] is the specific discharge and Ag/As is the hydraulic gradient due to change
in hydraulic potential, ¢ over a distance, s. K [LT "] is called the coefficient of permeability
or hydraulic conductivity, which is a function of the intrinsic permeability of the medium (k),
fluid density {(p), dynamic viscosity of the fluid (i), and acceleration due to gravity (g) and is
related by

K- 5{3—9 (1.2)

Hydraulic conductivity values usually show variations through space within a geologic
formation. They may also show varations with the direction of maasurement at any given
point. The first property is termed heterogenefty and the second anisotropy. Thus, if the
hydraulic conductivity is independent of the direction of the velocity, the soil is said to be an
isotropic flow medium. Moreover, if the scil has the same hydraulic conductivity at all points
within the region of flow, the soil is said to be homogeneous and isotropic. If the hydraulic
conductivity is dependent on the direction of the velocity and if this directional dependence
is the same at all points of the flow region, the soil is said to be homogensous and
anisotropic. However, when the directional dependence is varying at different points of the
flow regicn, the soil is said to be heterogeneous and anisotropic. '



Manifestation of inhomogeneity in soil fomations may vary in its characteristics and pattern.
For instance, a homogeneous soil block may exhibit anisotropic behaviour whereas a
heterogeneous soil formation can be Isotropic to flow. Therefore, to compietely describe the
nature of the hydraulic conductivity in a geologic formation, it is necessary to use two
adjectives, one dealing with heterogeneity and one with anisotropy. The different possible
combinations of heterogeneity and anisotropy can be classified into (Freeze and Cheny,
1979): (1)) Homogeneous and Isotropic, (i) Homogeneous and anisotropic, (lif} Heterogeneous
and isotropic, and (lv) Heterogeneous and anisotropic.

Consider a two dimensional vertical section through an anisotropic soil formation. if ¢ be the
angle between the horizontal axis and the direction of measurement of a K value at some
point in the domain, then K= K(a). The directions in space corresponding to the angle, a at
which K attains its maximum and minimum values are termed as the principal diractions of
anisotropy and they are always perpendicular to one another. In three dimensions, if a plane
s taken perpendicular to one of the principal directions, the other two principal directions are
the directions of maximum and minimum in that plane.

If an (x,y,2) coordinate system is set up such that the coordinate directions coincide with the
principal directions of anisotropy, the hydraulic conductivity values in the principal directions
can be specified as K,, K,, and K. In an Isotropic formation K, =K, =K, at any point whereas
an anisotropic formation will have K, # K, # K. If the geology Is such that it is not possible
to align the principal directions of the hydraulic conductivity values with the rectangular
coordinate system, then the hydraulic conductivity tensor is a matrix of nine slements viz.,
[K;lfori=xyz andj=xXy.z



2.0 OBJECTIVES

The objective of the present study is to simulate the hydraulic potentials in an unconfined
anisotropic aquifer due to a point source of strength, Q [ L*T" ]. The hypothetical aquifer
system is formed by 2 number of layers inclined at angle, a with the horizontal. The principal
directions of anisotropy are aligned with the bedding plane of the strata (with hydraulic
conductivity, K,) and perpendicular to it (with hydraulic conductivity, K,) respectively.
Simulation of hydraulic potentials are caried out for varying coefficients of anisotropy
#/K,/K,) in the aquifer and different orientations (a) of the strata. Within the frame of the
present investigations, following are the studies being carried out:

(i) Simulation of hydraulic potentials in an anisotropic, single-unconfined aquifer due to
a point source.

()  Simulation of hydraulic potentials in a layered-heterogeneous aquifer (where each
layer is homogeneous and isotropic) due to a point source.



3.0 REVIEW OF THEORY

A survey of the literature reveals that investigations on anlsotropic aquifer systems are
meagre. A few theoretical results have been reported from earlier studies. The theory of flow
of fluids through anisotropic porous medium is presented by Scheiddegger {1957),
Polubarinova-Kochina (1962), Harr (1962), and Marcus (7962). Some investigations on the
transformation of anisotropic medium to isotropic medium are also available (Bhattacharya
and Patra, 1968; Mishra, 1972; and Strack, 1989).

In numerical groundwater modelling practices, coordinate rotations are effected so that the
off diagonal components of the hydraulic conductivity tensor go to zero within grid elements
or cells. This is accomplished by defining a global coordinate system for the entire problem
domain and lacal coordinate systems for each cell in thé grid (Anderson and Woessner,
1991). 1t is possible to derive equations relating the principal components of hydraulic
conductivity defined in the local coordinate system to the compeonents of hydraulic
conductivity tensor defined in the global coordinate system {Bear, 1972).

Some important characteristics of anisotropic aguifer systems are presented below. This
includes the evolution of hydraulic conductivity tensor, basic {ransformation of the anisotropic
domain, relationship between layered heterogeneity and anisotropy, and the nature of
anisotropic hydraulic conductivities and potentials in the medium.

3.4 ANISOTROPIC HYDRAULIC CONDUCTIVITY

in a homogeneous aquifer the hydraulic conductivity, K [LT"] is same in all directions.
However, homogeneous aquifers in the true sense are raré and in practice, the soil often is
layered with the hydraulic conductivity being different in the directions parallel and nomal to
the layers. This is illustrared in Figure-3.1. The hydraulic conductivity parallel to the layer, K,
(in the direction of x*-axis) being larger in magnitude than that perpendicular, K, (in the
direction of y*-axis) to the bedding plane. Let a be the angle of dip (the angle, the bedding
plane makes with the the x-axis, in the rectangular Cartesian coordinate system). Let, also,
(x, y) and (x*, y*) be the Cartesian coordinates of an arbitrary point R in the actual plane

and the rotated plane respectively.



Fig. 3.1 Schematic representation of the hypothetical anisotropic aﬁuifer with inclined
bedding planes; the aquifer is recharged from top by a point source Q.

Then,

= x'cosa - y'sina 3.1)

X
¥y = Xx'sina + y'cosa

Let q,, g, and qQ,. q"F be the corresponding specific discharge vectors in the actual and rotated
plangs. The expressions for g, and q, in terms of g, and q',r are similar to eqn.(3.1):



1t

Ty @rcosa - g,sina

. . 3.2
g, = dySina + g cosa 32)

Now, application of Darcy's law in terms of x*, y* coordinate system ylelds:

g = -2
ox (3.3)
g; = —)'Cz_at .
ay*

where K, and K, are the principal values of the hydraulic conductivity.

Using eqn.(3.3) in egn.(3.2), we get.

g, = K 99 cosa+ X, O sina
ox* ay”
(3.4)
q = K 99 sina - K 99 Cosa
ax* gy

By the application of chain rule to egn.(3.1) yields:

cosa+ o9 sina
oy

(3.5)
O . 8¢ Oox 09 Oy . 09

ina+ 20
5 " %3y dy 3y 3 Sinas aycosm

Combining eqn.(3.4) and eqn.(3.5), the Darcy's law for anisotropic hydraulic conductivity for
two-dimensional flow is obtained as:

- g B0 _p OS¢
T Ko dx Koy oy
(3.6)

3
dy = ‘KyX%_Kwi



where,

Ky = Kicos?a+ K,sinca
Xxy - ‘Yyr - (K:_k;) sinacosa (3?)

K, = K sin‘a+ Kk, cos2a

For the general case of three-dimensional flow, the Darcy's law is given by:

-k 9 _. O . O
q:r Xk BX ny 8}’ sz az

g 9% _ . O . ¢ 3.8
ay K, o K, 3y K, 3o (3.8)

- -5, x 00 . 3p
gz Kz}{ aX sz ay Xzz az

The nine coefficients K (i=xyz|= X,y,2) are known as the coefficients of the hydraulic
conductivity tensor given by:

e K, : (3.9)

which is a symmetric matrix with the diagonal elsments K., K, and K_,.

3.1.1  HYDRAULIC CONDUCTIVITY ELLIPSE

Consider an arbitrary flowline in the xy-plane in a homogeneous, anisotropic medium with
principal hydraulic conductivities K, and K, (Fig. 3.2a). Along the flow line

Juul— g@



where K, is the hydraulic conduclivity in the direction of q,. Though it is unknown, it should

lie within the range of principal hydraulic conductivity vaiues [K,. K,). Resolving q, into its
components, g, and g, we get:

g - K5

B g.cosa

(3.11)

a, - —K},%{ = g,sina

. Ky ~ Ks
X
=
ax K ~ Kx

[l ol

Fig. 3.2 [a ] Specific discharge q,in an arbitrary direction of flow, and [b] the hydraulic
conductivity ellipse (after Freeze and Cherry, 1979)

Now, the potential (head) in the aquifer is a function of space, ¢ = o(x,y). Therefore:

3k _ dh.8x, 0k Oy

o - 3.12
dg  Ox as dy s ( )



But, geometrically, 8x/8s = cos a and 3y/2s = sin a. Substituting these relationships together
with the above equations and simplifying yields:

2 i 2
1 _ cos’a, sin‘a (3.13)
K, K, K,

Eqn.(3.13) relates the principal conductivity components K, and K, to the resultant K, in any
angular direction, ¢. The comesponding equation in rectanguiar coordinates may be obtained,
by putting x =r cos a and y = r sin g, as:

r_2=_}£-2_+‘L2 314
ra K, (3.14)

Eqn.(3.14) reprents an ellipse with major axesx/K_ and\/K, (Fig. 3.2b) and it is known as the

hydraulic conductivity ellipse. Thus, itis possible to determine the hydraulic conductivity value
K, for any direction of flow in an anisotropic medium. From the above resuits it can be

deduced as a coroliary that the direction of the stream lines will not coincide with the direction

of the normal to the equipotential lines.

3.2 COEFFICIENT OF ANISOTROPY

Examining the components of specific discharge vector [eqn.{3.3)], itis clear that we can not
define a single potential ¢ since the coefficients in q, and q', are different. However, it is
possible to transform the flow domain to a different domain with with coordinates, say X and
Y such that a potential ¢ may be defined In that domain. Let the transformation be exprassed
as:

X=x"

Y=58y*

(3.15)

Itis possible to choose £ such that the hydraulic potential ¢ satisfies Laplace's equation in
the transformed domain,



We have the continuity equation written in terms of X', ¥’ coordinate system as:

dax, 87y _ (3.16)
ax* ay*

Substitution of eqgn.(3.3) In to the equation of continuity provides:

Fo_ L PO _ g 3.17
(x")2 23y 3.17)

"j“rla

Applying the transformation in eqn.(3.15) yields:

i P g2 _ g 3.18

gy TP Gy . (3.19)
By choosing 8 =V(K, / K,), It can be seen that the potential ¢ satisfies the Laplace's
equation in terms of X and Y. Hence, the potential can be evaluated in the transformed
domain. 8, the root of the ratio of hydraulic conductivities along the principal directions, is
termed as the coefficient of anisotropy.

However, the equivalent isotropic hydraulic conductivity, K in the transformed domain is
needed to compute flow rates from solution. By virtue of a simple flow-net analysis it can be
shown that the equivalent isotropic hydraulic conductivity,K =V(KK,).

Now, a solution of eqn.(3.18) for ¢ can be obtained in terms of the coefficient of anisotropy
and the equivalent isotropic hydraulic conductivity as:

(X, ) = 1
¢ Pn R (3.19)

Eqn.(3.19) is valid for an aquifer system in which the orientation of soil strata is horizontal.
For a general case when the bedding planes of the strata are inclined to the horizontal, an

10



appropriate transformation of coordinates can be performed to gbtain the potentials. It will be
seen that the equipotential lines of ¢ will be following elliptical paths in the vertical section
of the aquifer system.

3.3 LAYERED HETEROGENEITY AND ANISOTROPY

Sedimentary soils often consists of thin alternating layers of varying permeabilities as a result
of particle oreintation. It can be shown that a stratified medium of homogeneous and isotropic
layers can be converted into an equivalent single homogeneous and anisotropic layer,

_—
7|T d1 K1
a2 K
|
| Ky
d
: )E = Ko
| -
¥ F
|
f
-~
an Kn
x NN
Fig. 3.3 A stratified-heterogeneous aquifer and its equivalent single-homogeneous-

anisotropic aquifer (after Freeze and Cherry, 1979)

Consider a layered soil formation with varying permeabilities for the layers as shown in
Figure-3.3. Eeach layer is homogeneous and isotropic with respective hydraulic conductivity
values K, K,, . . . ,K_and thicknesses d,, d,, ... d, Let us consider flow perpendicular to

11



the layering. By continuity, the specific discharge, q must be the same entering the system
as it is leaving and it shouid be constant throughout the system. Let Ag, be the head-loss
across the first layer, Ag, the head-loss across the second layer, and s0 on.

Then, the total head-loss will be:

26 = Ap, +AP,* . .. TAP, (3.20)

By Darcy’s law, specific discharge,

A A A
g:f(l-—ﬂ:f(z—?—z=..=f(n gﬂzxy%@ (3.21)

1]

where K, is the equivalent vertical hydraulic conductivity for the layered system. From
eqn.(3.21) as well as eqn.(3.20).

K. o= Ld = gd
Y A¢ A APt .. +AY,

(3.22)
gd
qa. /K +qd/ Kot .. qdpl Ky

Therefore, an equivalent vertical hydraulic conductivity for a layered system is related by the
actual hydraulic conductivities and thicknesses of individual layers and is given by:

a

K= 4~
z dj/Ki
i=1

(3.23)

Now, consider flow parallel to the layering. Let Agp be the head-loss over a horizontal
distance, L. The discharge Q from the system is the sum of the discharges through the
tayers. The spegcific discharge, g = Q/d is therefore given by,

12



- Kjdj
g-y KBidi B¢ _ 4 B¢ (3.24)

L
IF
-

where K, is the equivalent horizontal hydraulicconductivity of the system and is given by:

R

K = Y L (3.25)

=1

Eqn.(3.25) and eqn.{3.23). respectively, provide the hydraulic conductivity values K, and K,
(paraliel and perpendicular to the stratification respectively) for a single-homogeneous-
anisotropic formation which is hydraulically equivalent to a layered (heterogenecus) aquifer
system of homogeneous-isotropic geological formations. Further, it can be shown using
equations (3.23) and (3.25) that K, > K, for all possible sets of values of K, (I=1,2,. . . ,n));
in other words, the equivalent hydraulic conductivity in the direction of plane of stratification
is greater than that perpendicular to the strata.

13



4.0 METHODOLOGY

Simulation of hydrauiic potentials due to a point source of strength Q [ L*T" ] placed at the
surface of an aquifer system is carried out in the case of an (i) anisotropic, single-uncenfined
aquifer system, {ii) a layered-heterogeneous aquifer system, and (iii) stratified, heterogeneous

and anisotroipic aquifer system.

An appropriate transformation of the anisotropic medium into an isotropic domain is carried
out. The isotropic hydraulic potentials are then computed in the fictitious domain by one of
the methods applicable for homogeneous isotropic aquifers. Finally the fictitious hydrautic
potentials are transferred back to the actual domain yielding the required anisotropic hydraulic
potentials.

41 TRANSFORMATION OF ANISOTROPIC FLOW DOMAIN

The analysis followed presents a methodology (Strack, 1989) for the transformation of
anisotropic flow domain on to a fictitious isotropic domain for two-dimensional flow systems.
The methodology has been adapted with some modifications to suit the present

investigations.

We denote the Cartesian coordinates in the physical plane as (x*,y"), where the x° and ¥
axes are horizontal and vertical, respectively. The major principal direction of the hydraulic
conductivity tensor makes an angle o with the x° axis. Now, the Cartesian coordinates
{(x*"y*'} is chosen such that the x* axis Is inclined at an angle o to the x axis (Fig. 4.1a). The
Cartesian coordinates (x" y") in the transformed domain (Fig. 4.1b}, labeled by the superscript
t, are chosen such that they correspond to the coordinates 6 ¥} in the physical plane.
Finally, the Cartesian coordinate system (x'.y") is introduced in the transformed domain such

that the x' axis correspond to x° axis.

The coordinates (x*',y") are expressed in terms of (x°y*) by:

x¥ = x®cosa - ysina
: (4.1)
yF = xP'gina + yPcosa

14
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Fig. 4.1 Scheme of transformation of [a] the anisotropic physical plane onto [b] an

isotropic domain; K,, K, are the hydraulic conductivity values along the principal
directions of anisotropy, and « is the angle of dip of the bedding planes.
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. The inverge of this transformation is given by:

x7 = xPcosa + yPsina
. (4.2)
yP” = -xPgina + yfcosa
Using the following transformation into the isotropic domain
x" = x 4.3
ye = py” ®3)
where f = V(K,/K;}
If the angle between the x" and x' axes is ¥, then
xt = x%cosy - ¥Tsiny
4.4
yt = x®sginy + yTcosy (44)

The x* axis in the transformed domain corresponds to the x° axis in the physical plane. Since

y' = 0 along the X' axis, we have from eqn.(4.4):

L: = ~tany ; for yt=20 {4.5)
X
Also, y° = 0 along the x°, so that from egn.(4.1):

(4.6)

Y¥ - _tany ; for yP=0
XP'

Combining eqn.(4.3}, eqn.(4.5), and egn.(4.6) provides an expression for ¢ in terms of a as
(4.7)

tany = Btana

16



It is now possible to express x' and y' in terms of x” and y*:

xt = (xPcosa + yPsina) cosy - B {-x"sina + yPcosa) siny
(4.8)
vt = (xPcosa + yPsina) siny + B (-x?sina + yPcosa) cosy
This may be re-written as:
xt = cosacosy [xP({i1+Btanatany) +y® (cana-Btany) ]
{4.9)
¥yt = cosacosy [x?(tany-Btana)+y”(tanatany+g) |

It is possible to select the coordinate transformations in such a way that -n/2 s o s =/2.
Further, from aqn.(4.7) it is evident that ¢ also can be chosen such that -n/2 < ¢ < n/2 .
Then without loss of generality the range of analysis can be restricted to the case where:

—-.gsas+%

i - (4.10}
TZEVE
Therefore,
cosy 20 V U (4.11)
and we have,
cosy = 1 {4.12)

Jyi+taniy

Using the expression for cosw In eqn.(4.12) with eqn.(4.7) and eqn.(4.9) and simplifying gives:

- ¥ 3
xt = xP/costa<pisinia + yP (1-8%) sinacosa
yecos?a+p@2sinfa

4.13)

17



yr=y* B : (4.14)
veos?a+B2sin‘a

The expressions in eqn.(4.13) and eqn.(4.14) relates x' and y' of the transformed domain to
the corresponding coordinate x° and y* in the original domain.

18



5.0 SIMULATION OF HYDRAULIC POTENTIALS

Simulation of hydraulic potentials is carried out in a cylindrically symmetrical unconfined
anisotropic aquifer. Equipotential linas are drawn for the vertical section of the aquifer system,
Referring to Fig. 3.1 (in section 3.0), the hypothetical aquifer system is formed by a number
of strata with inclined bedding planes. The bedding planes of the soil layers make an angle
a with the horizontal axis. The angle of dip (a) of the bedding planes with the horizontal is
varied between zero and n/2 for various cases. The principal directions of anisotropy are
along the bedding plane of the strata and perpendicular to it. The corresponding anisotropic
hydraulic conductivities are K, and K, respectively. A point source of strength, Q[ L°T" }
located at the centre of the system is maintaining the hydrautic potentials in the aquifer
system by steady-state recharge from the top. The boundaries of the hypothetical aquifer
system are assumed to be at very large distances from the source thereby extending the
aquifer system to infinite distance. As such, at infinite distance from the source hydraulic
potentials tend to be zero.

Sirulation of hydraulic potentials are carried out for various tevels of anisotropy in the aquifer
and different orientations of the strata. Simulation of hydraulic potentials is camied out in the
following types of aqulifer systems:

(i) An anisotropic, single-unconfined aquifer with inclined strata
{ii) A horizontally-layered heterogeneous aquifer system where individual layers are
isotropic

An algorithm ANISOT has been devised based on the transformation procedure detailed
earlier (section 4.1) and used to simulate the hydraulic potentials in a vertical section of the
aquifer system. Using input information on source strength (Q), Hydrauiic conductivity values
in the principal directions (K,, K;), number of layers (n), angle of dip of the strata (a), and grid
(rz) the aigorithm computes the steady state hydraulic potentials in the anisotropic
unconfined-infinite aquifer system.

Though it is assumed that the aquifer system extends to infinite distance, only a finite extent
of the system is used for plotting the equipotential lines to allow reprographic convenience.
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5.1 ANISOTROPIC SINGLE-UNCONFINED AQUIFER

The set of cases with different coefficients of anisotropy and bedding plane inclinations

chosen for simulating hydraulic potentials in the anisotropic, single-unconfined aquifer type
are given in Table 5.1.1.

A- ANISOTROPIC SINGLE AQUIFER
Sets a=0 a=n/12 a=mi4 a=ni2
=1 v X X X
g= v v v v
g= v v v v
B= v v v v
A=10 v v v v

Table 5.1.1  Set of cases with different combinations angles of dip, @ and coefficients of
anisotropy, £

The aquifer parameters used in the simulations are given In Table 5.1.2:

PARAMETER VALUE

Source strength, Q 0.1 m¥s
Hydraulic conductivity in the major direction, K, 0.001 m/s

Angle of dip of strata, ¢ 0, 12, m4, ni2°
Coefficient of anisotropy, £ 1,2,47,10
Ratio of hydraulic conductivity values, K /K, 1, 4, 16, 49, 100
Lateral extent of the aquifer system simulated, L 1000 m

Depth of the aquifer system simulated, D 250 m

Table 5.1.2  Aquifer parameters used in the simulations for various set of cases
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Fig. 5.1 compares the hydraufic potentials in an isotropic aquifer with that in an anisotropic
aquifer where there is a horizontal stratification. The solid lines inside the plot indicate the
stratification. The horizontal hydraulic conductivity, K,=0.001 m/s in both the aquifers. In the
case of isotropic aquifer (Fig.5.1a), as K, and K, are equal, the equipotentials form semi-
circies around the source and radial-flow will be taking place uniformty in all directions. The
horizontal hydraulic conductivity in the anisotropic aquifer is 100 times greater than that in
the vertical direction. The shape of equipotentials in the anisotropic case {Fig.5.1b) is semi-
elliptical clearly indicating the tendency of the fAow to take place in the least resistive
direction.

Fig. 5.2 depicts the hydraulic potentials in aquifer systems with different orientations of the
strata. The thick lines in the plot indicate the orientation of the strata. The hydraulic
conductivity values in the principal directions and coefficient of anisotropy are the same in
all these case. Hence, the plots compare the distribution of hydraulic potentials in aquifer
systems with varying inclinations of the soil strata with the horizontal.

Fig. 5.3 shows the equipotentials in four aquifer systems with different coefficients of
anisotropy. The bedding planes of the strata are horizontal as indicated by the solid lines in
the plot. The coefficient of anisotropy is varied from g=2 to =10 for the cases (a), (b), (c),
and (d) in Fig 5.3 respectively. The flattening of equipotential lines is evident as the system
becomes more and more anisotropic. Same kind of plots as that of the previous one is
presented in Fig. 5.4, Fig. 5.5, and Fig. 5.6 wherein the orientation of the strata are g = m/12,
a = 4, and a = n/2 respectively for each case. These plots represent seiected cases from
the spectrum of all possible combinationé of coefficient of anisotropy and orientation of
bedding planes of soil strata in an anisotropic system. This helps one to visualise the pattemn
of distribution of heads in various anisotropic aquifer systems,

5.2 LAYERED-HETEROGENEOUS AQUIFER SYSTEM
itis discuésed in section 3.3 that a layered heterogeneous aquifer system, where each
individual layer is homogeneous and isotropic in itself (but, layer to layer variability exists),

can be represented by an equivalent anisotropic aquifer. Though the hydraulic potentials in
the original layered aquifer system and that in the equivalent anisotropic system differ, they
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will be equivalent as far as discharges are concerned. Therefore, the hydraulic potentials in
such an equivalent aquifer can be simulated for assessing the flow from the layered system.
in the present study one such layered aquifer system is chosen for simulating hydraulic
potentials in its equivalent anisotropic aquifer.

Fig.5.7a is the sketch of the original layered aquifer system where the thicknesses of the top
and the bottom layers are 100 m each while the middle layer is 50 m thick. The hydraulic
conductivity of the top layer is 0.001 m/s and it reduces one order of magnitude each from
top to bottom. Table 5.2.1 gives the aquifer parameters of a three-layered heterogeneous
aquifer system used for the simulation of hydraulic potentials:

PARAMETERS _ VALUES
Source strength, Q 0.1 m¥s
Number of layers in the aquifer, n 3

Hydraulic conductivity of Layer-1, K., 0.001 m/s
Hydraulic conductivity of Layer-2, K, 0.0001 m/s
Hydraulic conductivity of Layer-3, Ky, 0.00001 m/s
Angle of dip of strata, o 0°

Lateral extent of the aquifer system simulated, L 1000 m
Depth of the aquifer system simulated, D 250 m

Table 5.2.1 Aquifer parameters of the three-layered heterogeneous aquifer system used
for the simulation of hydraulic potentials

Fig.5.7b shows the distribution of hydraulic potentials in the equivalent anisotropic aquifer of
the three-layered heterogeneous aquifer system. The layered heterogeneous aquifer system
has been simulated as an equivalent single-anisotropic aquifer with the parameters shown
in Table 5.2.2:
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PARAMETERS VALUES
Hydraulic conductivity in the major direction, K, 425 e4
Hydraulic conductivity in the minor direction, K, 236 e-5
Ratio of hydraulic conductivity values, K,/K, 18
Coefficient of anisotropy, 8 4.25
Lateral extent of the aquifer system simulated, L 1000 m
Depth of the aquifer system simulated, D 250 m

Table 5.2.2 Parameters of the equivalent single-anisotropic aquifer of the three-layered
heterogeneous aquifer system

Streamlines may be constructed for the equivalent anisotropic medium with appropriate
techniques and the flow from the system can be assessed which would be the flow from the
actual layered aquifer system.
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6.0 SUMMARY AND CONCLUSION

The report provides a broad profile on the theory of anisotropic flow in porous media and
reviews methodology for computing hydraulic potentiais. A brief survey of the literature
reveals that reported investigations on hydraulic potentials or flow in anisotropic aquifer
systems are meagre. Further, simulation of hydraulic potentials in an unconfined anisotropic
aquifer system, and also in an equivalent anisotropic system of a three-layered
heterogeneous aquifer system due to a point source is camied out. An algorithm has been
devised, using appropriate transformation technique and analytical results, to compute
anisotropic hydraulic potentials. The hypothetical aquifer system is presumably formed by
numerous soil strata inclined with the horizontal. The hydraulic conductivity values are
assumed to be along the principal directions of anisotropy. Hydraulic potentials are simulated
with varying coefficients of anisotropy and orientations of soil strata. The equipotential plots
have been presented in the vertical section for visualising the pattern and behaviour of
anisotropic hydraulic potentials in various cases.

It should be bom in mind that the direction of flow and of the hydraulic gradient in an
anisotropic porous medium are not parallel, generally. Hence, the angles between the
directions of fiow and of the hydraulic gradient are to be determined prior 0 constructing flow
lines from equipotentials in an anisotropic aquifer system. By considering the hydraulic
conductivity values in the principal directions, relationships can be established to determine
the angles between the directions of flow and of the hydrauiic gradient in the anisotropic
domain (Marcus, 1962). Therefore, the present study can be augmented by incorporating an
algorithm for the construction of flow lines too.

Acknowledgement: The author thanks Dr. R.G.S. Sastry (UOR, Roorkee) for useful discussion.
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