TR(BR) 5/96-97

ASSESSMENT OF PROBABILITY
DISTRIBUTION OF DISSOLVED OXYGEN

&)
R —
ord § v wringe

NATIONAL INSTITUTE OF HYDROLOGY
JAL VIGYAN BHAWAN
ROORKEE - 247 667

1996-97



CONTENTS

S.No. Title Page No.
1.0 INTRODUCTION 1
20 UNCERTAINTY ANALYSIS 2

2.1 First Order Analysis of Uncertainty 6

22  Monte Carlo Simulation 9

23  Performance Evaluation of the Distribution for DO 11
3.0  Basic Water Quality Modcl 13

3.1  Application of First Order Analysis t obtain DO Deficit
Profile 14

3.2  Application of First Order Analysis to obtain Critical DO

Sag 15

40 DATA SELECTION 19
50 RESULTS AND DISCUSSIONS 21
5.1  Estimation of DO Profile 21

5.2  Estimation of Location of Minimum DO and Minimum DO

Distribution 24
5.3  Comparison of Statistics from K-S Test 27
5.4  Prediction Performance Evaluation Criteria 28

5.5  Uncertainty in the Location of Point of Minimum DO on

the Stream 28



6.0

7.0

CONCLUSIONS
6.1  Critical DO and its I ocation
6.2 DO Profile Along the Stream

REFFRENCES

5 8 & 8



8. No.

10.

11.

12.

LIST OF FIGURES

Title Page No.
DO Profile usang First Order Analysis 31
DO Profile using Monte Carlo Simulation 32
Comparison of Monte Carlo Simulation and First Order Analysis 33

DO Profile using Monte Carlo Simulation assuming all the input variables
arc Log-Normally Distributed. | 34
Comparison of Monic Carlo Simulation and First Order Analysis 35
ProbabilitydemityFlmcﬁonforaﬁcalDOmmﬁngittochomally
distributed with its parameters determined by First Order Uncertainty

Analysis | 36
CPDF for DO using First Order Analysis and assuming Normal

Distribution 36
Probability density Function for critical DO determined by Monte Carlo
analysis assuming all the input parametcrs to be Normally distributed 37
CPDF for DO using Monte Carlo Analysis and Normally Distributed Input 37
Probability density Function for critical DO detormined by Monte Carlo
analysisassmninginpnﬂpamnetmtobeLog-Normaﬂydisuibmod 33
CPDF for DO using Monte Carlo Analysis and Log-Normal Distributed
Input Parameters 38

PDF for critical DO using First Order Analysis and Log-Normal



13.

14,

15.

16.

Distribution 39
CPDF for DO using First Order Analysis and Log-Normal

Distribution for DO 39
Probability density Punction for crifical travel time obtainod using

Normal distribution and First Ordor Analysis 40

* Simulation (input to be Normally distributed) 41

Simulation (input to be Log-Normally distributed) 2

Vi



S. No.

10.

LIST OF TABLES

Title Page No.
Range of Data by Stream class i9
Parameters uned in Uncertainty Analysis 19

Comparison of First Order Uncertainty Estimates and Monte Carlo
Estimates of DO(ppm) under Normal Distribution 22
Comparison of First Order Uncertainty Estimates and Monte Carlo

Estimates of DO(ppm) under Log Normal Distribution 23

&

Critical DO in the river reach under Normal Distribution
Critical DO in the river reach under Log Normal Distribution 26
K-S Test for DO, assuming DO to be Normally Distributed 27

K-S Test for DO, assaming DO to be Log Nommally Distributed 27

&

Test for the Predictability Criteria

Variation in critical time obtained using different methods 29

Vil



ABSTRACT

It has been recognized that processes in natuarl stream environ ments are inherently
random. The ability to quanitify the probabilistic status of stream environments is of vital
importance in water quality management decision making. This report presents a
methodology to asscss the probability distribution of dissolved oxygen based Streeter-Phelp
equation. The methodology involves, the use of First-order analysisand Monte Carlo
simulation to analyze the uncertainty associated with dissolved oxygen. The mean and
standard deviation of the parameters hvac been assumed same for studied probability
distributions,

The crtical DO is found to be approximately normaily distributed. The mean value
of DO at the critical location is found to be more or less same, irrespective of the method
used. But the level of uncertainty associated with the DO is found to be considerably
different. The Monte Carlo simulations with log-normally dsitributed input is found to give
the lower uncertainty in the DO levels. |

For estimation of travel time, Monte Carlo simulation with lognormally distributed
input variables is found to be a preferable method. For the over all DO profile in the
stream, First order analysis predicting the same DO level as given by Monte Carlo

simulationand lower level of uncertainty, is found to be more justified



1.0 INTRODUCTION

A major portion of the complexity associated with water quality modelling and
prediction is the inherent randommess exhibited through the stream environment. Not only
arc the physical and biological processes not clearly defined, but an impoeing rember of
uncertaintics are associated with the various processes occurring with in the stream
environment. Several rescarchers have already sttemptod to snalyze theso uncertainties.
Loucks and Lynn (1966) investigated the effect of inhorent uncertainty duc to the natural
variations in stream flow and waste flow on the probability distribution of dissolved oxygen
(DO), Padgett and Rao (1979) presentod a joint probability distribution for biochemical
oxygen demand (BOD) and (DO), and Xothandaraman and Ewing (1969) and Chadderton
et al. (1982) have investigated the effect of stochastic nature of the model parametors in
assessing the probability distribution of DO deficit. In achicving effective environmental
control, the procedure of Waste Load Allocation (WLA) should consider the natural
inherent randommness of water quality parameters. The allocation process involves the
estimation of stream assimilative capacity. Characterisation of point and diffuse source
inputs, reserve capacity allocation, and a subsequent assignment of available capacity to
designated discharges. Procodural steps require a8 determination of the Total Maximum
daily load (TMDL.) and a distribution of assimilative capacity in an equitable manner.

Realising the existence of such uncertaintics in water quality modelling, the
prediction of DO deficit or DO concentration with in a given reach of stream is no longer a
deterministic exercise. Rather, the DO deficit must be treated as a random variable. In
probabilistic water quality analysis, it is typical to deal with the problems of asscssing the
probability of water quality violation. To perform such probability computations,



knowledge about the statistical propertics and the distribution of water index mmst be
o ,

Mwm-mmmmmhmwmof
stream DO, most of these studies have boen concerned with the varisbility of DO
concentrations due to model parameter uncertainty (Kothandaraman and Ewing 1969;
Hornberger 1980; Chadderton ct al. 1982). However, there have been some attompts to
derive analytical expressions for the exact probability distribution associated with the DO
deficit. Thayer and Krutchkoff (1967) utilized aq stochastic birth and death process to 'l
obtain an expression for the probability distribution of DO deficit. 'l'hayermdl(mtcitkoﬂ"
(1967) utilized a stochastic birth and death process to obtsin an oxpression for the
probability distribution of DO concentration without considering the uncertsinties of the
mode! parameters. Esen and Rathbun (1967) assumed the reareation and deoxygenation
rates 1o be normally distributed and investigated the probability distribution for DO and
BOD using a random walk approach. Notably, Padgett et al. (1977) developed a joint
probability density function for the BOD and DO concentrations for solving a stochastic
differential cquation, and Padgett and Rao (1979) later developed a non-parametric
probability density function of BOD and DO.

From a practical viewpoint, the main disadvantage of each of the aforementioned
methods is that the resulting probability distributions derived for the DO deficit are very
compticated. The required mathematical skills nooded for such sophisticated approaches
would make it difficult for most engincers to apply. Furthcrmore, all these analytically
derived probability distribution functions for the DO can only be obtained by using very

simpic distributions for the model paramecters such as uniform and normal. When



distributions other than those simple ones are used to describe the randomness of water
quality parameters (which could well be the case in reality), the analytical derivation of a
probability distribution for the DO would be extremely difficult, if not impossibie.
Another approach that is frequently applied by engincers is the Monte Carlo
simulation. The method has recently been incorporated into the enhanced QUAL2 model,
called QUAL2-UNCAS, by Brown and Bamwell (1987). This brute force enumeration
scheme requires a large number of repetitions, which could be computationally expensive.
Ofcourse, with the advent of computing power and efficiency of computers, the weight of
such concern will be gradually diminishing. However, at the prosent time,  computational
efficiency and cost remain an important concern in practical engineering problem solving.
In support of a more tractable methodology, this study examines an approximate
approach to probabilistic water quality analysis in that the statistical moments of the DO
deficit are estimated by the first order analysis. The statistical moments estimated are then
incorporated with an appropriate probability distribution model for the DO deficit.
However, practical issues that can be raised are: (1) Which is an appropriate probability
model for the DO deficit? and (2) if there is one such probability model , how sensitive is it
to the distribution of water quality MM? Theoretically, the exact probability
distribution of the DO deficit should change if the distribution of water quality parameters
is changed. However, from a practical view point, it is worthwhile to investigate the
appropriatencss of some commonly used probability models in. describing the random
characteristics of the DO deficit computed by the Strata-Phelps cquation. Because the
distribution of the DO deficit may in theory be dependent on the statistical properties of the

water quality parameters themselves. The candidate probability distributions included in



the study were normal, and lognormal. To characterize those distribution completely,
vﬁmmmmhMTodoﬁ;ﬂnmmdmofﬂnDO
deficit were cstimated using first order uncestainty analysis. This information was then used
to compuie the appropristc statistical paramctors for cach of the candidate probability
- models using thc moment-parameter-relstionships that can be found in Hasting and
Peacock (1974) and Patel et al. (1976).



20 UNCERTAINTY ANALYSIS
Omﬂwmaprowﬁmhmemdenhgofwmrqm&yﬂmhu
dcvulopcdmsimmaechmdcd,phydcdandbiobgicdprmmminﬂvwwm.
Their possible apphcmommgeﬁmndenhfymmmmgmaﬂ'mm
watcrquaﬁlytoforocasﬁngﬂ:equalityforwmﬁondpmpom.mmem deterministic
models were utilized. However, a fundamental characteristic of environmental engincering
phmommisﬂw&hmﬁmicswchudcmure.haddiﬁonwﬂmﬁequmtmbhmofhwhg

thly,dcwnninisﬁcmde!smmhﬁnmlcrtodedwiﬂamﬂmmhuyh
contrast to the stochastic models. Howevm',determinisﬁcmodelscanpndictonlyﬂnmcm
mexpecwdvaluueofﬂlepmccasorwom-caseﬁhnﬁonandﬂﬁsismwcepublewhﬁm
fmmodchgprmhaﬁngmme«ﬁnty.ﬁwmceﬂaﬁﬂymhmdwiﬁwm
quaﬁtyprwmes(amibuwdm-t,anmnberofmn)hnmmwmpﬁuwdbmmW
high in degree.

Thercisalwayssmnelmcer&nty,bo&inﬂwevalmtionofﬁclddatamdhﬂnusc
of mathematical models to predict the outcome of natural processes are siill not completely
mdemOodandmeﬁ:nrepresmuﬁonhuannyoompﬁcadedmocosﬂymhpknwnt.
Thmisa]sosomeird:ercntvaﬁabﬂhymdrmdonmmhmﬂrﬂprmmdﬂwir
measurements. Thcirﬁﬁalcondiﬁonsmayalsobermdom,dﬂaerbecausemeanmmts
are biased by random variations. The model coefficients are random cithe because our

asscssment is not prefect or because of random variations in measurements. Inputs may



also be uncertain because cstimates of future loadings, based on projections and future
wastewater technologics, may be biased.

With these types of considerations in mind, the intent in the following is to examine |
some of available stochastic modelling approaches. In the present study, the uncertainty is
considered implicitly with the dissolved oxygen model using first-order analysis a.nd Monie

Carlo simulations.

2.1  FIRST ORDER ANALYSIS OF UNCERTAINTY

The method of first order uncertainty analysis can be used to estimate the amount
of uncertainty, or scatter, of a dependent variable due to uncertainty about the independent
variables included in a functional relationship. The method is applied with the assumption
that all covariances arong variablos are zero. First order uncertainty analysis has been
described in detail by Benjamin and Cornell (1970). Example applications have also been
presented by Burgess (1979) and Chadderton and Miller (1980).

The use of first - order uncertainty analysis is popular in all ficlds of engincering
because of its relative casc in application to a wide array of problems. The detailed theory
and mathematics of first order uncertainty analysis can be found in Benjamin and Comnell
(1970) and Comell (1972). As an cxample of such usc in the water quality fickl, Burges
and Lettenmaier (1975) have utilised the method to investigate the uncertainty in
predictions of BOD and DO with in a stochastic stream environment.

Essentially, first order analysis provides 8 methodology for obtaining an estimate for
the moments of a random variable which is a function of one or scveral random variables.

It estimates the uncertainty in a mathematical model involving parameters which arc not



knownwiﬂweﬂdnty.ByuaingﬁMmd«mlyd&&ecmnbhedeffectofmccﬁﬁntyina
mode! foxmmaﬁmaswellasﬂwuseofumeminparmmmbeaumed.

Fhstordermceﬂaintymﬂyaisischuacteﬁzcdbytwomjorcomponents:(l)
Single moment (variance) treatment of random variables ; and (2) the usc of first order
approximation of any functional relationship (c.g. the use of Taylor’s serics expansion ).
The first component implies that the random ¢lement of any variable is defined exclusively
by its first nonzero moment or simply the varianceof the random variable itself. Thus the
hfonmﬁonpmﬁﬁngmﬂwchmcwrofamdmnwﬁaﬂckpmﬁdodwldybyiumcm
and variance.

The second component states that only the first order terms in a Taylor’s scries
expmsionwdﬂbcuﬁﬁzedhﬂhemalydsofﬁmcﬁonﬂrchﬁmuhipconmhﬁngmdmn
variables or processes. Wil:hexcepﬁonoftheﬁmﬁonofﬂn mean (in which second
mdertcnmmaybeincmdcdformepmponofaccom&ngforcomhﬁonmong
vuiablu),myaumnptmmmhtemmlﬁghermmﬁmorderhiﬂwexpmdonreqm
more information about the random variabies than those provided by their first and sccond
moments (Cornell, 1972).

Toprescmﬂicgeneralmethodoloyofﬁmtordermalynis,comidwamﬁmn
variable, Y, which is a function of N random variables (multivariste case). Mathematically,

Y can be expressed as
Y = g(X) D
where X = (X, X, .......... » Xn), a vector containing N random variables X, .

THough the use of Taylor’s expansion , the random variable Y can be approximated by



z - N N N - - -
ng(X)+:§1[g',-](X‘_ ) +;§§[5’;§X ](X.-J,,i’)(X,-z}.’)
2)
in which X = (X; , Xz 5 vy and Xy ), 8 vector containing the mean of N random
variables and = represents equal in the sense of a second - order approximation.
To consider the corrclation among random varisbles X, , the socond order
approximation of the mean (the expected value) of random variable Y is

= E[]=g(X)43 ?;:é[a;gx] cov[ X, X ] ®

in which cov{X; ,Xj] is the covariance between random variables X; and X;;. It should be
noted that the second torm in equation (3) can be dropped if the random variables X, are
uncomrelated. In such a case, the resulting equation is the same as the first order

It follows that the first order approximation of the variable of Y is

N N

o = var[Y ];ZZ[ é“ﬁ’ I; jlcov[Xi,Xj] (@)

i=1 y=1

If the X, and X are uncorrelated , equation (4) reduces 1o



1 N :
Op=, [—@I . )
| X v

where = means equal in a first order sense and G';'ithevuimccun'rmpomhgtormdom
variable X; .

2.2 MONTE CARLO SIMULATION

MCS isa sampﬁngprocodtmhlwhichpmsiblevaluesformch:ptnpmtm
ueselocwdﬂmldomﬁomapproﬁﬁmpdﬁmdmdhlﬂmmodelmprodmem
ofthcompms.MCSismorecmnpletcﬂ!mFOAmddoesnotreqtﬁremmnpﬁonsof
Eneaﬁlymdsmanpamnemmmces.ndoesmqtﬁremumpﬁomonﬁwmnm
pdfsmdiscompmaﬁomﬂyhﬁensiwgemﬂquuﬁthSOOmmmmoddnm.Thc
appmachﬂhm&ﬂedmﬂ\efoﬂowmgﬁgwcisacmaﬂyqlﬁtesimplcmcmccpt.m
deﬁnhgﬂicprobabiﬁsﬁcsummofmcpmengaparmewrscthsclecwdﬂrmdan
ﬁnmmeWmlﬂﬁvmiatepdfThemdclisnmwiﬁlthmprametemmdﬂlc
output mMTﬁsm&emcth.mﬁnw(~lS%)mhm
(~1sm)esﬁ:mfmmemupum.rhesemnpuumﬂmmﬂmdpmbmﬂisﬁcany.m

probability plots without making a distribution assumption about the outputs,
'I‘hcimpmtanceofindividualpu'metemindetemﬁningthe uncertainty associated
“dﬂ:parﬁctﬂm-vaﬁablecmbeassessedbyconmuﬁngme correlation between the model

outputs and the input parameters. Those parameters that are highly correlated with the



mode] outputs are obviously important since changes in the values of these parameters will
result in a corresponding change in the outputs from the models. On the other hand, if the
correlations between outputs and parameters is low, the parameter is not very influential in
determining the outputs.

Two checks that should be incorporated into any MCS are an examination of the
correlation structure of the randomly generated parameter values and an examination of the
pdfs of the randomly generated parameter values. The correlation structure of the
parameters must statistically match the target correlation structure. If the intent was io
gencrate independent rvs but in fact a high degree of correlation ends up in the generated
pmmmeoutpmwdmcewiﬂbeﬁcmﬂyesﬁmted.%rcxmmkcmsidmplmﬂ
p2 as two parameters that arc positively correlated with the model output but are
uncorrelated with cach other. If the generated “random” values of pl and p2 arc
significantly positively correlated, the variance and the uncertainty in the output of the
modelwillbcex;gcrated.

The fraction , F; of the total variance in model output attributable to the ith

parameter based on a MCS can be estimated by computing

2 (6

where 1,; is the correlation between the output and the ith parameter and p is the number
of uncertain parameters. This is a very rough approximation and may be uscd for guidance
only. If the output variance is judged to be excessive, equation 8 and 9 can be used to

determine which parameters are the biggest contributors to this uncertainty. Attempts can
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then be made to reduce the variance on these inﬂuentialparmembygettingbettcr
cstimates for them.

Equation 7 can be used to cstimate how much variance a particular parameter can
havcmdstillachieveata:getvmianceonO.Forcxan'tpleifvtismctargctvarianoc, the

target variance on parameter p) can be estimated from

1 P
Var(p,)= |V, - 28Var(p,) o

=1
J ]

The varance reduction calculations provide guidance only. They are not
exact{obviously) sincescither FOAror MCS is exact. Furthermore, it is not always possible
to reduce the variance of the input parameters. The results of a MCS can be subjected to a
multiple regression analysis in a further cffort to identify the important input parameters.
Regression coefficients relating a model output to the input paramcters that are not

statistically significant are likely of little importance in determining the model outputs.

2.3 PERFORMANCE EVALUATION OF THE DISTRIBUTIONS FOR DO
The idea of applying first order analysis for estimating the first two statistical
moments of the DO deficit, along with a selection of an appropriate probability model for
the DO deficit, straight forward and practical. However, among the various prebability
models that are commonly used, a practical question to be raised is, ‘Which probability
model (or models) best describes the random behaviour of the DO deficit in a stream?’ In

the following investigation, two parameteric ic. normal and lognormal probability

11



distribartions have boen sclccted as candidatos such that a wide spectrum of shapes arc
reprosented.

To evaluste the relative performance of cach of the two candidate probability
distributions considered, throe performance criteria with respect to prediction ability are
adopted herein: (1) Biasncss (BIAS); (2) mean absolute error (MAE); and root mean
squared error (RMSE). These criteria are used simultaneously in an attempt to identify the
best probability model. These criteria are mathematically defined as

1. Biasnecss:

- |
BIAS = j'(xN, - x,)dp | ®

2. Mean absolute error:

!
M=ﬂxp.f _erU ®

RMSE =['f(xﬁ -x,) (10)

12



in which x; = the true value of DO cotresponding to the pth order of probability; and x, .
= the estimate of x, determined from the assumed probability model, f, with its mean and
variance cstimated by the first-order analysis.

The test of goodness of fit is tested using the well known Kolmogorov-Smirnov
test.
3.0 BASIC WATER QUALITY MODEL

Strecter and Phelps (1925) were among the first rescarchers to recognize the
capacity of a water resource to receive and assimilate organic wastc material depended on
the oxygen economy. The first order reactions for deoxygenation and reaeration were
combined to give the ratc of change of oxygen deficit. The relationship among the
parameters affecting the m-stream dissolved oxygen concentration is given by Equation

(11):

K -K -K ¢ -K t
D=—J£ﬁ{e'f—e Ay2wDe @ an

K -K 0

a d
in which D = dissolved oxygen deficit (Cq - C) in milligrams per liter; C; = dissolved
oXygen safuration limit, in milligrams per liter; C = dissolved oxygen concentration, in
milligrams per liter K, = reareation rate coefficient (basc ¢, per day); K4 = deoxygenation
rate coefficient (base e, per day), L, = initial instream total ultimate biochemical oxygen
demand, in milligrams per liter, D, = initial instream dissolved oxygen deficit, in mg/)._.

and t = time of travel from D, to D (days).

13



3.1  Application of first-Order Analysis to obtain DO Deficit Profile:

First order uncertainty analysis of the basic Streeter Phelps Dissolved Oxygen Sag
equation is presented in this section. Basically the first order uncertainty analysis will
provide a measure of the uncertainty of the dependent variable, D in terms only of the
uncertainty in  indcpendent variables: K, , Kg, Ly, Dy and t; i.c., percentage of the
scatter of dissolved oxygen deficit predictions around the true deficit at any point along the
sag curve can be assigned to cach of the independent variables.

Taking the partial derivative of D with respect to each of the independent variables.

8D

g (12)
8D,
§D Kd e X _e r,c) (13)
AL, K K
éD _ -K, L, (e™ - g W) —d vt K Lte™ -De™ (14)
oK (K. -K) K,-K))
éD _ dLo (e ST -l;:)_K Iﬁte‘r“ (15)
oK, (K -K) K.-K,
D K, Ke - -
ot K -K, " RDe "

Theﬁmt-orderappro:d:mﬁmmﬂlewmlﬁmmuintyinmedissolwdoxygendcﬁcﬂh
obtained by applying Equ. (5), the resulting equation is given by Equ. (17).

o, =(TIC| ) an



The terms of Eq. 17 arc defined Yy Eq. 18

éD D D
C = 5_[):6“;(’; = -(-?—I:a,o;C, = é_K:a"

4D 5D 1
C4=_'_Ux; s =50,

2K, ™ At

For Egs. 17 and lB,ﬂwsymbolSmemsﬂwstmdﬂddwimionofpuﬁmﬂatvaﬁable.
Thus, Eq. 17 shows that each of the independent variables contributes to the dispersion of

Dh:amamcrpmporﬁomltoitsownvmiance,sz,mdpﬁporﬁmal‘toafactor

(@/oY,  which is related to the sensitivity of changes in D to changss in the

independent variable (Benjamin and Comell, 1970).
Application of the method of first order uncertainty analysis to the BOD-DO

syskmmqﬁmsesﬁmahsofmempmtavﬂuesmdsmdwddmiaﬁmuofDo,Lo,

Ky, Ky, and t.

3.2  Application of First-Order Analysis to obtain Critical DO Sag:
lhelowcstorcﬁﬁcalpointofDOcmisimpoﬂmtasitgivuﬂwmmth

mdissolvedoxygm.mecﬁﬁcalﬁmecmbeobtdnedbydiﬁ‘umﬁaﬁmﬁwngm

equaﬁon(ll)wﬂthmspecttoﬁmemdphcingﬂwresulﬁmcmsﬁonequalto zero. The

point of the minimum oXygen content, int ms of fime, t, is thus obtained as

15



1 D, _ 2_122
r‘-k‘(f—l)h'{f(“f;:) f Lo] (19)

It is clear from Ewu, (l9)ﬂutt¢dependslq:onfourmdependentvmablumely

k..,k.Lo,anan Talungmepu'ualdenvauwoft,wﬂlrupacttomhofﬂlemdcpmdan
variables.

a, 1 2D, D
- I+ J s -t
ot 2 e B
(20)
a ] o
D D, o
0 ]_ - ) 2
{ -(r- )l.,] | @D
a, 1 m[ D) D.] 1 D, 2/,
=—= 3 1+2 - 0|y — =l 1+ = - =t
&, k(f-D j{ L.,] "I k,k,(fq)[u%(l—f)][ L, L,,)
(22)
a, _ D,
o kcLi[l-(f—l)f—’} | 23)

e
Ihememvahxof[uobuimdbyaubsﬁnmﬂnmmof ke, ke, Lo, and D,

16



in Equ. (19). The equation for variance in {; is obtained by substituting various senstivity
cocfiicients in Equ. (5), as given below

The maximum DO deficit D, is obtained by substituting t = t. in Equ. (11) from

Equ. (19), the following expression is ovolved

D = k‘;‘—[”e"“" (25)

It is seen from Equ. (24) that D, haﬂmoﬁonoffomindopendmtvuiabhnmdy
ks, ke, Lo, and t.. Taking the partial derivative of D, with respect to each of the
independent variables to get the respective senstive coefficient corresponding to each of the

independent variable.

D, _LA-kt) .,

% X (26)
d a .
‘2 = - k;f“' et @7

17



a,
(28)
D, K
zj“‘i:{"‘"““‘
’ (29)
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4.0

DATA SELECTION

The independent variables of Equ. 11 are subject to wide variations from stream to

stream or even from reach to reach of the same stream. Global or even regional mean

values and standard deviations would be difficult to estimate and would probably not

permit useful conclusions to be drawn. Four classes of streams, defined by the self -

purification ratio, f = K,/K4, were described. by Fair et al. (1968) as given in table 1.

TABLE 1 - Ranges of Data by Stream class

Stream-class f K, K4 vV H

description (dimensionless) | (per day) | (per day) | (meter/sec.) | (meters)
Shuggish 1.25-1.50 0.05-0.10 | 0.033-0.08 | 0.03-0.15 3.05-6.10
Low-velocity 1.50-2.00 0.10-1.00 | 0.050-0.67 | 0.03-0.15 0.92-3.05
Moderate-velocity | 2.00-3.00 1.00-5.00 | 0.500-2.50 | 0.15-0.61 0.61-1.52
Swift 3.00-5.00 1.00-10.0 | 0.200-3.33 | 0.61-1.83 0.61-3.05

In the present study following data given in table 2 is used in thc uncertainty

analysis. This set of data is taken from Burges and Lettenmaier (1975).

Table 2: Parameters Used in Uncertainty Analysis

Parameters Mean Standard Deviation Coefficient of
iati
Initial BOD, L, 12.15 1.00 0.08
(ppm)
Initial DO Deficit, 1.00 0.50 0.50
Dy (ppm) |
Deoxygenation 0.331 0.10 0.32
Coefficient kg
(per day)
Reoarcation 0.690 0.20 0.29
Coefficient k,
(per day)
Travel Time, t, —_ - 0.25
(days)

19



For a detailed study, the uncertainty analysis could be applicd to individual streams
a8 given in table 1. Furthermore, a wide range of parameter values and combinations could
be selected to permit study of the relative importance of the variables for varicty of strcam

20



5.0 Results and Discussions

5.1  Estimation of DO Profile

The mean DO profiles alongwith their standard deviation obtained by first-order
uncertainty analysis and Monte-Carfo simulations (assuming input to be Normally
distributed) are shown in Fig.1 and Fig. 2 respectively.. Comparisons between Monte
Carlo simulations and first order analysis are also shown in Table-3 and Fig. 3.

The obscrvations indicate that the estimated mean value of dissolved oxygen
(DO) appreciably different for cither method of estimation. It is clear from Fig. 3 that
DO lewels are more or less same by both the methods up to the point of maximum
sag. Aficr this point,both the profiles depart from each other and the deviation between
them increases with distance and saturatos after a certain distance and then remain more
or less constant. Furthermore, it is observed that the DO levels given by first order
analysis are always on the higher side in the post saag region of the stream.

The standard deviation cstimated by both methods indicates that the first order
approach is quite satisfactory as it has less variance than the Monte-Caro simulations.
The standard deviation increases to a maximum and diminishes in magnitude with
distance along the stream. The point of maximum uncertainty is somewhat down
stream of the minimum dissolved oxygen level.

Now, assuming all the paramecters of DO model are to be lognormally distributed.
The resulting simulated profile is shown in Fig. 4. The comparison between the first
order and Monte-Carlo simulations (assuming all the input parameter to be log

normally distributed) is shown in fig. 5 and tablc 4.
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Table 3: Comparison of First-Order Uncertainty Estimates and Monte Carlo Estimates of
DO (ppm) under Normal Distribution

Time of First Order Analysis Monte Carlo Analysis Skewness

Travel

(days) Mean Std Deviation | Mean Std. Dewviation

0.0 8.00 0.50 7.93 073 64
0.5 6.73 0.63 6.0 0.80 299
1.0 6.07 0.79 6.09 0.90 [1.58
15 581 0.85 583 0.97 132
20 579 0.89 5.81 1.00 128
25 592 0.91 5.94 1.03 -1.39
3.0 6.14 0.93 6.10 1.07 -1.60
35 6.39 0.95 6.33 110 170
4.0 6.67 0.95 6.55 1.13 11.88
45 6.93 0.94 6.7 1.14 193
50 718 0.92 6.99 1.13 224
55 7.42 0.88 722 1.13 246
6.0 7,63 0.84 737 . | 113 267
6.5 7.81 0.79 751 113 276
7.0 798 0.73 7.70 1.06 337
75 8.12 0.68 l1a1 1.06 331
8.0 8.25 0.62 791 1.06 3.52
8.5 836 0.57 8.04 1.03 403
9.0 8.45 0.52 8.12 1.01 421
95 8.53 0.47 823 . |09 498
10.0 8.60 0.42 827 0.99 4386
10.5 8.66 0.38 834 095 5.17
11.0 8.71 0.34 8.42 0.88 5.80
115 8.75 0.30 8.47 0.86 6,04
12.0 8.79 0.27 8.51 0.86 633
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Table 4: Comparison of First-Order Uncertainty Estimates and Monte Carlo Estimates of
DO (ppm) under Log Normal Distribution

Time of First Order Analysis Monte Carlo Analysis Skewness
Travel (days)
Mean Std. Dev. | Mean Std. Dev.
0.0 8.00 0.50 8.02 0.50 -1.54
0.5 6.73 0.63 6.78 0.64 -0.83 -
1.0 6.07 0.79 6.15 0.77 -0.56
1.5 5.81 0.85 591 0.82 -0.58
2.0 5.79 0.89 5.88 0.84 -0.56
25 592 0.91 6.00 0.84 0.48
3.0 . 614 0.93 6.18 0.86 *0.53
35 6.39 0.95 6.39 0.89 -0.55
4.0 6.67 0.95 6.64 087 -0.54
45 6.93 0.94 6.83 0.87 -0.57
5.0 7.18 0.92 7.07 0.85 0.73
5.5 7.42 0.88 7.29 0.83 -0.86
6.0 7.63 0.84 7.45 0.84 -1.07
6.5 781 0.79 7.63 0.78 430
7.0 7.98 0.73 71 0.79 -1.16
75 8.12 0.68 791 0.75 -3.31
8.0 8.25 0.62 800 0.72 -3.52
8.5 8.36 0.57 8.13 0.66 -4.03
9.0 8.45 0.52 8.20 0.68 -4.21
9.5 8.53 0.47 8.28 0.61 498
10.0 8.60 0.42 838 0.59 -4.86
10.5 8.66 0.38 8.43 0.56 -5.17
11.0 8.7 0.34 8.49 0.53 -5.80
1.5 8.75 0.30 8.56 0.48 -6.04
12.0 8.79 0.27 8.59 0.43 -6.33
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It is very interesting to note that in the pre-sag region the first order profile over
uﬁmﬂuﬂlelmlofDOsag,whﬂchmepoﬂ-sagregimmeMm-Cmiomﬁlegim
higher estimates for DO levels in the stream. Because the pre-sag region is more
important fiemthe management of water quality point of view the over-cstimation of
DO sag is on the safer side. Therefore, first order analysis is more suitable than
the Monte-Carlo simulations. Furthermore, the first order profilc has more uncertainty
in the pre-sag than the Monte-Carlo profile. But at the point of critical sag the difference
in the standard deviation determined by first order and Monte-Carlo simulations is of the
order of 0.05 ppm which can be neglected for the sake of simplicity. This difference
increases after the sag point and then reduces along the strcam and at & certain point they
become equal and then standard deviation determined by Monto-Carlo simulations over
takes the standard deviation given by first order. This difference first incroases and
then remains constant afier getting ssturated in the post sag region.

5.2  Estimation of Location of minimum DO and minimum DO
distribution.

The mean and standard deviation for minimum DO level and  its location on the
river determined by first order analysis and Monte-Carlo simulations assuming all the
parameters are normally distributed have been given in table-5. The probability
distribution functions for minimum DO levels determined by first order analysis and
Monte-Carto simulations using normally distributed input arc shown in fig. 6 to fig.13
respectively along with their cumulative distribution functions. It is observed that both the
mean value and standard deviation of DO determined by first order analysis are on

higher side than the corresponding values obtained by Monte-Cardo simulations.
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Furthermore, it is noticed that the DO distribution determined by Monte-Carlo
simulations is skewed towards keft indicting the occurrence of lower DO levels in the
stream at the critical location which is of immense importance for the management of
water quality in a stream. This particular phenomenon is eclipsed by the first-order
analysis.

Now, assuming all the input parametersof water quality model to be lognormally
distributed, the minimum DO distribution is determined as shown in fig. 10 and fig.11.
The comparison of this distribution with that of first order analysis is given in table
6. It i3 again observed that the mean and standard deviation given by first order analysis
are on higher side than those of the Monte-Carlo simulation. Comparing table 5 and table
6, the influence of distribution type of input parameters on the minimum DO is clearly
visible. The assumption of lognormal distribution for input paramecters reduces the
uncertainty in DO level, while increases its magnitude of mean value which is more
or less equal to that of the mean value given by first-ordor analysis. For further insight
into the DO distribution at the critical section of stream, the probability density function
along with its cumulative ﬁsmbuﬁmhwhﬁg 12 and fig. 13, assuming log-
normal distribution for output DO with mean and standard deviation obtaincd by first
order analysis. It is noticed that this distribution is more or less same as the DO
distribution obtained by Monte-Carlo simulation assuming all the input parameters to be
log normaily distributed.

Now question arises which distribution is the best to predict the DO distribution at

the critical section. For answering this question two criteria h2ve been used.
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Table 5: Critical DO in the river reach under Normal Distribution

Mecthod of | Dissolved Oxygen (ppm) Travel Time (days)
Analyzis Mean | Standard Dev. | Mean | Standard Dev.

First-Order 5.770 1.062 1.785 0.138
Analysis

Monte-Carlo | 5.663 1.001 1.864 0.589
Simulation

Table 6: Critical DO in the river reach under Log Normal Distribution

Method of | Dissolved Oxygen (ppm) Travel _Time (days)
Analysis Mean | Standard Dev. | Moan | Standard Dev.
First-Order 5.770 1.062 1.785 0.138
Analysis

Monte-Carlo | 5.705 0.834 1.858 0.443
Simulation |
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5.3 Comparison of Statistics from K-S Test:

The analysis of the goodness of fit performance criteria waacondmtedatthecﬂtical.
location using K-S test as given below:
5.3.1 Assuming Normally Distributed Input:

Table 7: K-S Test for DO, assuming DO to be normally distributed

Method of Analysis Max. Diff. | Probability (2-Tail)
Monte Cardo (Output is 0.068 0.00
normally distributed)
Monte Carlo (input is log- 0.100 0.00
normally distributed)
First-Order Analysis 0.016 0.964
First-Order Analysis (Output 0.048 0.018
is lognormally distributed)

5.3.2 Assuming Log Normally Distributed Input:

Table 8: K-S Test for DO, assuming DO to be lognormally distributed

Method of Analysis Max. Diff. | Probability (2-Tail)
Monte Carlo (Output is 0.041 0.068
normally distributed)
Monte Carlo (input is log- 0.072 0.00
normally distributed)
First-Order Analysis 0.016 0.964
First-Order Analynis (Output 0.052 0.009
is lognormally distributed)

From table 7 and table 8, it could be concluded that the distribution of output DO
can not be assumed to be lognormally distributed. Because assuming it to be log-

normally distributed has increased the Max. Diff. from 0.068 to 0.101 when input is
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assumed to be normally distributed and from 0.041 to 0.072 when input is assumed to
be lognormally distributed. Similar trend is also observed with the first order analysis.
The influence of type of input variable distributions could be scen by comparing Max
Diff. statistics for Monte-Carlo simulations given in table 7 and tablc 8. The assumption
of lognormal distribution for input variables improves the Max diff. statistics from
0.068 to 0.041. This indicates that it is better to assume log normal distribution for the
input parameters instead of normal distribution.
5.4  Prediction Performance Evaluation Criteria:

The analysis of ihe prediction ability criteria was also conducted at the critical location
to see which distribution is better for prediction purposcs.

Table - 9: Test for the predictability criteria

True Distr..:Monte Carlo simulatin True Distr.:Monte Carlo simulatin
with normally distributed input with log- normally distributed input
Criteria | Assumed Distr.: Normal distribution | Assumed Distr.: Normal distribution

with first-order parameters with first-order parameters
BIAS 0.293 0.109
MAE 0.382 0.436
RMSE 0.471 0.319

It is clear from table 9 that the assumption of lognorricl distribution for input
parameters improves the Bias and RMSE confirming the above conclusion that input
parameters should be assumed fo be lognormally distributed instead of normally

5.5  Uncertainty in the Location of Point of Minimum DO on the Stream:
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The location of the critical DO in a stream is also not certain at a fixed point. It
varies with the variation in the input variables. The uncertainty analysis of the
location of critical DO is summarized in the following table (Table-10).

Table 10: Variation in critical time obtained using different methods

Method of Travel Time (days)
Analysis Mean Vahie Standard Dev.
First-Order Analysis 1.785 0.138
Monte Carlo with
normally distributed 1.864 0.589
input
Monte Carlo with log-
normally disttributed 1.858 0.443
input

From table 10, it is scon that the first order analysis under estimates both the
mean value and standard deviation of the critical travel time. Whereas, the mean travel
time estimated by the Monte-Carlo Simulations is more or less same irrespective of
the types of input variable distributions. But, they too differ with respect to the
uncertainty associated with the travel time considerably. As the carfier discussion with
respect to the minimum DO favors the lognormal distribution for the input variables, it is
justified that the standard deviation of 0.443 in travel time given by the Monte Carlo

simulations, assuming the input to be lognormally distributed is reasonably acceptable.
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6.0 Conclusions

6.1  Critical DO & its Location

1. Neither normal distribution nor lognormal distribution is found justified to represent
the output DO distribution. However, if one has to make a choice between them,
normal distribution is found to be preferred.

2. Lognormal distribution is found to be preferred distributions for the input
vatiables.

3. Fmesﬁmaﬁonoftravelﬁme,Monte-Cmiosimlﬂaﬁonwiﬂlhmmalmpmvmﬁblu
is found to be a preferred method.

4. The mean value of minimum DO at the critical location is found to be more or
less same irrespective of the method used. But level of uncertainty associated with the
minimum DO is found to be considerably different. The Monte-Carlo simulations with
log normal distribution input is found to give the least uncertainty in the level of
minimum DO Jevels,

6.2 DO Profile Along the Stream

1. The magnitude of DO level determined by first order analysis and Monte Carlo
simulaﬁonsmingnonnallydisu-ibmedinpmisahnost equal in the pre-sag region. The
Monte-Carlo simulaﬁonusinglo@omaﬂydistﬁbmwhpmﬁws high«bOlcvelsinﬁe
pre-sag region. Therefore, the first-order analysis being on the safer side for water
quality management activities, is found to be more Jjustified.

2. Frommcmlcmmhtypoﬁitofvicw,ﬁmtordcrmﬂysbhzvhgbsssthNddowaﬁm
than the Monte Carlo simulation, is found to be more suitable to predict the uncertainty in

the DO profile.
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