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PREFACE 

For more than 70 years, since the early work by Harold 
Streeter and Earle Phelps on the Dissolved Oxygen of the Ohio 

River, decision makers, engineers, scientists have continued to 
seek more rigorous means for assessing the effectiveness of 

environmental control actions. Many solutions have come out and 
control strategies have improved a lot. Despite of that, problems 

of water pollution in the developing countries like ours are 
still unmanageable. Population dynamics may be one of the 
problems, however, the other major problems are ignorance, 

unscientific management of pollution and lack of adequate 
awareness/knowledge about the consequences of pollution. 

River is the major sources of water in our Country for 
various designated uses , on the other side, it is also the main 
carrier of pollution originates from municipal and industrial 

sources. Most of the major rivers in the Country are victim of 
pollution, the status of some of them are serious in nature. If 
the problems of water pollution are not well taken within the 
appropriate time frame and managed scientifically, the problem 

will be more worse and may lead to the scarcity of water. 

Movement of pollutants in a river follows specific 
guidelines govern by the river hydraulics. Researchers have 

described the transport processes for a control system by the 

Advection-Dispersion equation. Because of the local complexities 
of the problem, the propagation of pollutants in a real stream 

is complex in nature and needs thorough understanding and better 
representation for accurate prediction and forecasting. 

As a scientific programme of the Ehvironmental Hydrology 
Division for the year 1995-'96, the basic research carried out 

by Simi N.C. GlioEdl, Scientist "V under the title 
"Effects of Dispersion on Nonconservative Substances" is a 

significant and mentionable contribution to that direction. The 
study is assisted by Shri Om Prakash, Research Assistant of the 
Division. 

(S. M. oeth)r 
Director 
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LIST OF SYMBOLS 

Symbols have been defined properly wherever they have 
appeared first. HowCver, the most commonly used symbols are 
defined below: 

A1' A2' A3 
Cross Sectional area of the Stream tubes 
perpendicular to the direction of flow, 

A Cross Sectional area of the Ith segment 
LJ and Jth Stream tube perpendicular to the 

direction of flow, (L2). 

Distance between the centre of Ith 
segment and Jth Stream tube alow the 
transverse direction, (L). 

co  

ct  

Concentration of pollutants at time, t=0 , 
(M.L-3). 

Concentration of pollutants at time, t, 
(M.L-3). 

Concentration of pollutants in th!3 Ith 
segment and Jth stream tube, (M.L ). 

Concentration of pollutants in the Ith 
segment and Jth stream tube after the 
time step K, (MJ: 4 ). 

Depth of flow, (L). 

Transverse Dispersivitycoefficient for 
the river,(0.T ). 

Ex 
Lopgitudinal Dispersion coefficient, 
(L6.T-1). 

Transverse Dispersivity coefficient for 
the stream tube, (L2.T-1 ). 

Area of the Ith segment and Jth Stream 
tupe along the transverse direction, 
(L4). 

Segment numbered along flow direction. 

Stream tube numbered along transverse 
direction. 

First order decay coefficient,(T-I). 

Number of segments. 

M(X1) Mass of pollutants at any location, (M) 



Number of stream tubes. 

Flow in the stream,(0.T-1). 

Sources/sinks of pollution, (M.T"). 

Time, (T). 

Li Averagecrosssectionalvelocity,(LT-1  ). 

u
* 

Shear velocity, (L.Td). 

U' Relative velocity in the Jth stream 1 
tube, (L.T"). 

Velocity factor, dimensionless term. 

UR Local, velocity in the Jth stream tube, 
(L.T"). 

W W I' J 

Width of the river/stream, (L). 

Coefficients of the finite difference 
matrices. 

Longitudinal distance, (L). 

Distance require for decay of the 
substances, (L). 

Mixing length, (L). 

Coefficients ofC1-11,1.fl and C 
respectively obtained 1'1 the 
difference matrices. 

Coefficients of C1,111“ obtained from the 
finite difference Matrices. 

Coefficients of CN1J I+1 and C.,  
J+14+1 respectively obtained 'from the unite 

difference matrices. 

At time step, (T) 

ax, AY, as Dimensions of elementary strip in three 
cartesian coordinates, (L). 

Difference of mass transported in two 
adjacent layers, (M). 

6C Difference of concentration of 
pollutants transportsd in the two 
adjacent layers, (M.L ). 

Pre-assigned convergence factor. 

Weightage 



ABSTRACT 

A common practice in modeling of water quality of a river 

is to assume immediate cross sectional mixing and to neglect 

longitudinal dispersion; for example, the derivation of the 

widely used Streeter-Phelps equation. Researchers had explained 

that the propagation of pollutants in a moving water is because 

of the differential advection and cross sectional dispersion and, 

thus represented by the Advection-Dispersion equation. 

For nonconservative or decaying substances, the spatial 

distribution of pollutants are usually estimate considering the 

equation which represents Advection-Dispersion-Decay of 

pollutants. Most of the water quality models have thus been 

developed assuming pollutants are completely mixed just after the 

point of release and neglecting the effects of dispersion. 

Points arise; i) could pollutants reach to the other bank 

(if release is at the one bank) at the point of discharge ? ii) 

since the decay of nonconservative substances depends upon the 

incoming pollution load at any point [ expression being, CVO°  = 

exp(-K.t); Ct  = concentration at any desire time, Co  = incoming 

concentration of pollution, K = decay coefficient, t = time], 

would the estimate give the correct picture when it is assumed 

pollutants are completely mixed at the point of release ? 

Literatures reveal that once the pollutants are completely 

mixed, the first order decay dominates the concentration profiles 

more than the longitudinal dispersion coefficient. And the effect 

of longitudinal dispersion could then be neglected. But in the 

initial period both decay and cross sectional dispersivity govern 

the concentration distribution. Analytical solution of 

pollutants transport for the initial period is difficult. A 

numerical analysis could be a best alternative. 

(1) 



A "Numerical Model" using the finite difference technique 

for the conceptualized stream tubes generated on the basis of the 

equi-velocity lines , has been developed, and solved forming the 

tridiagonal matrices considering Alternate Direction Implicit 

Explicit (IADIE) technique. Two types of convergence criteria ; 

convergence w.r.t. IADIE, ii) convergence w.r.t. time have 

been used for obtaining the spatial distribution of pollutant's 

concentration. The factors which govern the stability of the 

solution are; i) size of the segment, ii) selection of time step, 

dispersivity coefficient, and iii) transverse velocity 

profile. 

For given cross sectional and vertical velocity distribution 

at a specific width and depth respectively, and with a pre-

determined dispersivity coefficient, the model can be used for 

estimating the concentration profile at any time step and at any 

location within the initial period. The model has been verified 

with published data and found satisfactory results. The results 

reported in this study are based on the continuous release of 

pollutants at one bank. Further study assuming centre line 

injection of pollutants and with different dispersivity 

coefficients are suggested for generalization of the solution. 

The report also addresses a comparative pictures of effects of 

dispersion on conservative and nonconservative substances. 



1.0 INTRODUCTION 
Irrespective of any biological and/or biochemical reactions 

that may occur, it is axiomatic that polluting solutes which 

enter water courses are transported and dispersed downstream, 

where they affect the environment in various ways. The ability 

to describe and predict the effects of the transport processes 

on the distribution of pollutant concentration is, therefore, of 

great importance for the investigation of problems such as; 

estimating the assimilative capacity of rivers receiving urban 

and industrial effluents; assessing the ecological impact of the 

discharge of cooling water from power stations and predicting the 

passage of pollutant clouds through river systems. 

Observations reveal that, as a pollutant cloud is carried 

downstream in a water course, so it disperses, with the cloud 

steadily lengthening and peak concentrations decreasing as the 

pollutant is distributed in the ever-increasing volume of water. 

These effects are the result of a number of particular flow and 

mixing mechanisms, they are caused primarily by the interaction 

of two basic phenomena : differential advection and cross 

sectional diffusion. 

Open channel flows are shear flows, i.e., they support 

lateral and vertical gradients of longitudinal velocity. 

Therefore, pollutant is differentially advected downstream at the 

local flow velocity, with pollutant in the faster-moving water 

is carried downstream faster than pollutant in the slower-moving 

water. At the same time, pollutant is continually being 

distributed within the flow cross section via transverse and 

vertical processes, such as diffusion. 

After a tracer has become adequately mixed across the cross 

section, the final stage in the mixing process is the reduction 

of longitudinal gradients by longitudinal dispersion. If an 

effluent is discharged at a constant rate into a river whose 

discharge is also constant, it is apparent from the under 

mentioned discussion that there is no need to be concerned about 

longitudinal dispersion. However, a common practice in Sanitary 

Engineering has been to assume immediate cross sectional mixing 



and to neglect longitudinal dispersion. Question, however, 

persists about the accountability of decay/growth of substance 

concentrations within the mixing length (Ghosh, 1993). The mixing 

length which largely depends upon the width of the river, cross 

sectional and vertical velocity distribution increases with 

increasing river width and non-uniform velocity distribution. For 

small stream, the magnitude of decay/growth within the mixing 

length may be small thus ignorance of this aspect may lead to 

small error in computation, however, for large river width this 

magnitude may be higher. These eventually call upon for a study 

to ascertain the effect of dispersion both in the mixing length 

and after the complete mixing of pollutants specially for the 

nonconservative substances. 

This study highlights the effects of dispersion on 

nonconservative substances both in the "initial period" (defined 

later on) and the period after the complete mixing of substances. 

A Numerical model for the initial period of pollutant's transport 

developed based on the finite difference approach and solved 

using IADIE (Iterative Alternate Direction Implicit and Explicit) 

method, is also addressed in this report. 

2.0 NONCONSERVATIVE SUBSTANCES 

Nonconservative Substances or Decaying substances are those 

for which the mass changes as a function of time. For most water 

quality applications, the time rate of change of concentration 

or mass of nonconservative substances is described by either 

first order kinetics or kinetics of the Michaelis-Menten type. 

In the first order kinetics, the time rate of change of 

concentration of a substance is described as proportional to the 

concentration, C, present at time, t, as follows: 

dc Kr  
ffr 

Integrating this expression, we have, C= Co  elt  
where 

Ct  = concentration of substance at time t, M/L3 

C0  = initial concentration of substance at t = 0, and 

= first order rate coefficient, 

For decaying substances( decrease of concentration with 

respect to time), K is algebraically negative, and for growth ( 

(1) 



increase with respect to time), K is algebraically positive. 

3.0 BASIC SYSTEM CHARACTERISTICS 
The one dimensional mass balance equation which describes 

the behaviour of a substance in a waterbody in which 

concentration is affected by the dispersion, advection, growth 

or decay, and other sources or sinks can be written as : 

aC 

(Adx)
aC sax a(AVC) dC 

dx- dx±(Adx) ±R  (2) 
at ax èx dt 

where = concentration of substance, M/L3  

x = distance along the direction of flow, L 

t = real time, T 

A = cross sectional area perpendicular to x, La 

Ex= longitudinal dispersion coefficient, L
2/T 

= avg. stream velocity along flow direction, LIT 

R = source or sink of substances, MIT 

dc/dt = growth or decay of substances as given in Eq.(1). 

The left hand side of Eq.(2) represents the local derivative 

of substance concentration, whereas the right hand side 

respectively represents the behaviour of substances for; 

dispersion, advection, growth or decay and other sources or 

sinks. 

A solution to this equation would typically yield a 

relationship expressing the dependent variable, C, as a function 

of the independent variables, x and t. To get the solution, the 

other variables, Ex, U, R, and A need to be expressed by 

appropriate expression, in which they are expressed as functions 

of C, x ,t and constant terms and coefficients. For example, A 

is a function of x and t; U is a function of x and t, sources and 

sinks are functions of C, x and t; and Er  may be constant. 

For steady state system, the local derivative ZhC/St = 0, 

i.e., the left hand side of Eq.(2) becomes zero. 

3.1 SYSTEM CHARACTERIZED BY ADVECTION AND DISPERSION 

Before explaining the effect of dispersion on non-

conservative substances, the phenomenological characteristics of 

advection and dispersion need to be understood. 

The combined effects of advection and dispersion can be 
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illustrated by the following schematic diagram; 

Figure 1: Effects of Advection and Dispersion on 
concentration profiles resulting from the 
introduction of a Slug of conservative substance 
into a stream. 

Figure 2 : Effects of Advection and Dispersion on 
concentration profiles resulting from 
the introduction of a slug of 
nonconservative substance into a 
stream. 

Figures 1 & 2 respectively describe the behaviour of 

conservative and nonconservative substances after its discharge 

into a receiving stream under the following set of conditions: 

a) the substance is discharged at a constant rate over a finite 

time, b) downstream from the discharge, all properties of the 

stream, such as flow rate and velocity, are constant, c) the 

stream is one dimensional, d) net velocity is positive in the 
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flow direction, e) nonconservative substance decays as a function 

of time, while conservative does not. 

The total mass of substances initially released and the area 

under the concentration profile curves represent the total mass 

present at the corresponding time after release. The effect of 

advection is reflected by the displacement downstream of the 

concentration profiles. The effect of dispersion is reflected by 

the spreading of the concentration profiles and by the lowering 

of the peak concentrations. The combined effects of advection and 

dispersion are reflected in the skewness of the concentration 

profiles in the downstream direction. 

The effects of substance decay are reflected by comparison 

of corresponding areas under the concentration profile curves 

between Figures 1 and 2, and by the equalities and inequalities 

shown. 

Figures 3 and 4 schematically represent instream 

concentration profiles resulting from continuous point source 

discharge releases at a constant rate at x=0 of a conservative 

and nonconservative substance respectively. 

Figure 3: Effects of Advection and Dispersion 
on concentration profiles resulting 
from a constant continuous discharge 
of conservative substance. 

For conservative substance, (Fig.3) the effect of dispersion 

is to produce a concentration profile upstream from the discharge 

point, while identical concentration profiles are produced 

downstream from the discharge point for both advection only and 

for advection and dispersion. For a nonconservative substance 

(Fig. 4) the effect of dispersion also produces an upstream 

3 
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Figure 4 : Effects of Advection and Dispersion 
on concentration profiles resulting 
from a constant continuous discharge 
of nonconservative substance. 

concentration profile, but is diminished by decay as compared 

with Fig. 3. 

However, for the nonconservative substance the maximum 

concentrations (at x=0) and the shapes of the downstream 

concentration profiles are not same for the advection only and 

advection plus dispersion cases. These are both a function of the 

dispersion coefficient. 

3.2 DISPERSION OF DECAYING SUBSTANCES 

Supposing a substance whose rate of decay in a stagnant 

water body is given by the Eq.(1), and supposing that M units of 

mass per unit time of this substance are discharged into a river 

whose discharge is, say, Q. Downstream of the initial mixing zone 

the diffusion equation becomes; 

7:7 0)C_E  d2C icy  ( 3 ) 
ar x ax2  

where, U = average cross sectional velocity, L/T 2  

E = longitudinal dispersion coefficient, L /T 
1 

with a boundary condition that C --> 0 as x -->oO . The solution 

of the Eq.(3) is; 

C=Coexpl--( i(Ce 41 )-1)] )  ( 4 ) 

6 



-Coexp[ -( )(JcE71-1)J,.. . where, a 4E1K  .. (4a) 

where, Co  Is a constant of integration. oC = 0 corresponds to 

neglecting the dispersion term in the equation, because for 

tending to zero the quantity forming the exponential term in Eq. 

(4) tends to one, and the solution is that for simple first-order 

decay. 

The constant of integration can be determined from the 

condition that the rate at which mass entering the stream must 

equal the rate at which it is being removed by decay. If the 

source is located at x=0 and the initial mixing distance has 

length Xm, we can write for the reach in which the one 

dimensional equation applies that; 

I K. C. A. dx-N(A;)  (5) 

where C is given by the Eq.(4) and M(X1) is the mass transported 

through a cross section at x = X. Substitution of Eq.(4) into 

Eq.(5) permits computation of Co  for given 14(X1); however, 14(X1) 

is not the same as the rate of release of mass at the source 

because some decay occurs during the initial mixing process. The 

magnitude of decay can only be computed from a detailed 

investigation of the concentration distribution in the initial 

zone. For most practical purposes, the problem is handle by 

neglecting the existence of the initial zone, in effect setting 

X1=0 in Eq.(5). The integration then gives; 

/1, 2 Co-rja cTe  (re471-1)]  (6) 

For steady flow in a river, the distance required for cross 

sectional mixing,Xe  is approximately; 

0 4UV2 
 ( 7 ) Et  

where, W = width of the stream, Et  = cross sectional diffusivity, 

The clistance required for decay of the substance, Xd , to a factor 
of & is 

Xd = u/K 

and the ratio is Xd/xa = 2.5.Et /K W
2. The quantity Ca< may be 

7 



coefficient, Ex, 

concentration of 

has very little effect on 

pollutants. The occurrence 

the 

and 

written approximately, using Ex  =0.011 u2.0/d.u* 1] d = depth of 

flow; u = shear velocity] as; 

4. Ex. K O. 024W2K  CY- where, Et-1. 83. d. u• 
Er2 Et  

which means that in order for the decay distance to exceed 

the cross-sectional mixing distance (Xd  > must be less 

than approximately 0.06. The corresponding value of the bracketed 

term in Eq.(4) is 0.985, which means that the solution is almost 

exactly that for first order decay neglecting longitudinal 

dispersion. Thus there are two possibilities: either the material 

decays before it mixes across the cross section, in which case 

not a suitable model, or else the longitudinal 

term in Eq.(3) has 

dropped. If the former, Xd  < 

must be computed numerically. If X1  <X , and if the river and 

effluent discharges are steady as assumed in dropping the time 

derivative from Eq.(3), the downstream concentration in that 

case is reasonably well given by the first-order decay solution 

C=(M/Q) exp(-K.x/u). It should be noted, however, that effluent 

discharges are hardly ever steady. The typical daily fluctuation 

in output from a sewage treatment plant leads to gradients of 

concentration of the discharged material along the river, and 

these gradients are subsequently levelled out by the process of 

longitudinal dispersion. Although unsteady solutions of the one 

dimensional diffusion equation are available, practical problems 

involving daily variations are usually handled most easily by 

numerical models. 
It is apparent from the above discussion that in case of 

nonconservative substances, once the pollutants are completely 

mixed over the entire cross section the factor longitudinal 

dispersion 

downstream 
concentration of pollutants in the downstream 

case, are governed by the first order decaying coefficient. 

distribution and the effect of dispersivitY of pollutants are 

mainly dominant in the initial period of pollutants transport. 

One of the approaches for estimating the concentration of 

pollutants in the initial period is Numerical Analysis of the 

a 

Eq.(3) is 

dispersion a negligible effect and can be 

, the concentration distribution 

locations, in that 

The 



pollutants cloud; that has been described below. 

4.0 NUMERICAL MODELING OF INITIAL PERIOD OF 
POLLUTANTS TRANSPORT 

The "initial period" is defined as the period in which 

longitudinal dispersion is not properly described by the one 

dimensional diffusion equation. The time required from injection 

and to become the pollutants completely mixed is called as mixing 

time and the distance corresponding to this time scale is termed 

as mixing length or initial reach. In the initial reach, slug 

discharge is transformed into a longitudinally skewed 

concentration distribution by the combined action of transverse 

mixing and longitudinal advection. This reach has been defined 

approximately by 0< X'<0.4, where, X' = x W2/UEt (Fischer, 1968) 

( where, x = observation point along flow direction, W = width 

of the stream, U = average stream velocity, and Et  = transverse 

dispersivity coefficient). In the initial period, the cloud of 

pollutants is first advected by the local velocity in the 

direction of flow and thereafter disperses by the cross 

sectional diffusivity. Because of the nonuniform velocity 

distribution across the width faster moving water carry 

pollutants downstream at a faster rate than the pollutants in the 

slower moving water. Thus, one dimensional dispersion equation 

can not be applied over the entire reach considering the total 

width as an unit. A numerical approach would, therefore, be 

needed for better representation of pollutants movement and 

estimation of concentration of pollutants. 

4.1 THE MODEL 

In the initial period of moving pollutants, the effect of 

longitudinal dispersivity, EI, can be ignored assuming Taylor's 

concept of balancing advection and diffusion. On the contrary, 

because of sectional variability of velocity of flow, the 

propagation of pollutants in the perpendicular direction of flow, 

dominates by the cross sectional dispersivity, Ey. It can be 

better explained by the following example; 

Let us suppose that at some initial time, t = 0, a line 

source of tracer is injected in the flow. The actual initial 

distribution of the tracer does not much matter, but could 

9 



iz. aCi+ a  EE Ax. Az aChay 
ay ay r ay -E A 7.  

+K. C. Ax. Ay. Az±R  (8) 

visualize in the form of a line source. Initially, the line 

source is advected and distorted by the velocity profile. At the 

same time, the distorted line source begins to diffuse across the 

cross section at the rate of the potentiality of transverse 

diffusivity, Ey. During this period, the advection and diffusion 

are by no means in balance. If we wait a much longer time, it 

could observe that cloud of tracer extends over a long distance 

in the x- direction, the average concentration of pollutants, C, 

in that case varies slowly along the flow direction, and bekx 

is essentially constant over a long period of time. C' then 

becomes small because cross sectional diffusion evens out cross 

sectional concentration gradients. Once the balance is 

established further longitudinal spreading follows at the rate 

as depicted in Eq.(2) whose solution after sufficiently long time 

is a normally distributed cloud moving at the mean speed u, and 

continuing to spread. 

Therefore, the mathematical treatment of the transport 

processes can be considered with the assumption of the 

conservation of mass of a pollutants within an infinitesimally 

small control volume (Fischer et al., 1979). If it is assumed 

that pollutants are completely mixed over the small elementary 

strip and transport of pollutants are governed by the advection 

(along the direction of flow) and transverse dispersivity ( along 

the other direction), the mass balance equation in the 

differential form into a control volume as shown in Fig. 5 can 

be written as: 

Ax. Ay Az -r T. C. Ay/Az-U. CA Az-4111. C. Ay. AAA' 

10 



Figure 5 : Definition Sketch 

Simplifying equation (8) : 

C_ 71". Ax. Az  CAT,  Ey. Ax. az  A ac 
Ax. Ay. Az ax Ax. Ay. Az a-y[ a-yijAytK • C± ax. Ay. Az' ( 9) 

where 
Ax, 4, Az = dimensions of elementary strip in three 

coordinates i.e. ,along the flow direction, 
transverse direction, and depth wise 
respectively. 

= transverse dispersion coefficient, L2/T 

= average velocity in the elementary strip, LIT 

= first order growth or decay coefficient, T 

= concentratigin of pollutants in the elementary 
strip, M L- 

C' = concentration of pollutants moving in and out 
of the elementary strip along the transverse 
direction, M 

= source or sink of pollutants, M 

Assuming, uniform velocity and uniform mixing over the 

depth, the initial period can be modeled applying the Finite 

Difference scheme for the equation (9). 

To apply the finite difference scheme, following concepts are 

applied : 

i) Dividing the total flow by vertical lines into n stream tubes 

of Area AP A2 An , based on equi-velocity lines along the 

11 



depth, as shown in Fig. 6. Each stream tube is assigned a 

relative velocity, u1 1 , u2'  un' (Figs. 7(a) & 7(b)), based 

on the actual velocity measurement, care being taken that 
n , 

 (10) 

ii) A computer mesh for concentration values C is established 
11.1 

as shown in Fig. 8, [where, I refers to longitudinal distance in 

a coordinate system moving at the mean flow velocity and J refers 

to the Jth stream tube]. A time step 44. is selected subject to 

condition given below; the computer longitudinal distance step 

is taken as 

in which, u' is the mean velocity of the jth stream relative to 

a coordinate system moving at the overall cross-sectional mean 

velocity. Thus, the average flow in the stream tube of maximum 

relative velocity u'aax  is moving at plus or minus one computer 

mesh point per time step as shown in Fig. 7(b). 

iii)Each time step is assumed to consist of two parts: first, the 

concentration distribution within each stream tube is advected 

up or downstream according to the velocity of that tube, second, 

transfer is accomplished between adjoining stream tubes according 

to the given mixing coefficients. 

iv)In the advective part, an entire set of mesh point values 
C24m, is generated from the values of Cud('  where K indicates ,  

values at the beginning of each time stepAA. The advective 

velocities are converted to units of mesh points per time step 

by the relation 

 (12) 

The concept of transport of pollutants in the stream tube having 

nonuniform velocity can also be explained as; withdrawal and 

addition of pollutants in each segment depending upon positioning 

of local velocity with reference to the average cross sectional 

velocity. That means, if the velocity in a stream tube is less 

than the average cross sectional velocity, pollutants mass 

12 
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equivalent to the mass less advected because of difference in 

velocities are withdrawn from that stream segment, and for 

reverse condition pollutants' mass equivalent to the mass more 

advected because of difference in velocities are added to that 

stream segment. However, selection of stream tubes and size of 

segment are the two important factors responsible for the 
stability of the solution. 

4.2 FORMULATION OF FINITE DIFFERENCE SCHEME 
The finite difference scheme of equation (9) is written in 

the following form : 

Cr.r. ro.-C.r. r-Ur,r• cle r.JC.r. ni 

Ur,/(x.r.  J. Cr-i.J.X+1-RI 
Hz.

J. I.J. KA] +( Y"'":Fr 
HI. .7+i 

K CI,J+1,X-UI,J+1• UT ,J+1[  

U.I,J+1• Ur .J+1[ I,J+1• C I-1,J+1,K+1-13I.J•l• CI,J+1,10,]) 

LILA I,J. C I-1 .J.K+1-0 ,J • CI,J,K+1])-1- 

El."'" J. Ur.JE ',J. CI.J.X+1-13  r.rcr.t.J,K+11 

+Ur,..r. Ur. A a I.J ' C1-i.J,r+143r.rC1,r,r+11) -(C.r.J-1,r 

-U I Ur [ a r.J-l• CI, J-1.K•1-13I,J-1• 

[ A t 
I.J-l• C I.J-1, )i) r--- K. C"-iti'At+ 

R. At 
 sax Ay. az • 

U,  J. t 
where U=  ; J = 1,2,3,  

15 = relative velocity = URJ  - U 
= average stream velocity. 

U
h' 

= dimensionless velocity factor (+ve or -ve). 
= local velocity in the stream tube. 

0(41 = weightage 
when U = +ve, 04 1& (a 0 
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when U = -ve, 0( = o 

4.3 FORMULATION OF THE PROBLEM 

The Finite Difference schemes for each segment can be 

written in the algebraic form mentioned above. For M number of 

segments and N number of stream tubes there will be (M x N) 

number of algebraic equations. Using IADIE (Iterative Alternate 

Direction Implicit Explicit) solution techniques the algebraic 

equations can be solved to obtain the concentration of pollutants 

at each segment after every time step. 

Explicit solution implies - solving of linear 
algebraic 

equation for the unknowns for the spatial derivatives written at 

the beginning of the time step . It does not ensure stability and 

convergence unconditionally. 

In Implicit scheme, the spatial derivatives are written at 

the end of the time step. Since the number of unknowns become 

more than the number of equations, it is difficult to solve and 

will require prohibitively large memory requirement for 

solution. 
Implicit -Explicit on ADIE (Alternate Direction Implicit 

Explicit ) scheme implies writing of spatial derivative 

implicitly for one direction and explicitly in the other 

direction. This is used for two dimensional equations where both 

'x' and 'y' directions are involved. These types of schemes lead 

to determinate system of linear equation with known boundary 

conditions. 

4.4 ITERATIVE ALTERNATE DIRECTION IMPLICIT 
EXPLICIT (IADIE) SCHEME 

Alternate direction means - firstly writing the different 

coefficients of the tridiagonal matrices implicitly along the row 

treating the diagonal element of the explicit direction as 

implicit ( in order to make diagonal element strong to behave 

well) and then writing the coefficients implicitly along columns 

treating the diagonal element of the explicit direction as 

implicit. This process is repeated (iterated) till the specified 

15 



(I -1,J+1) (I, J+1) (I+1,J+1) 

(I,J) H (I+1,J) 
(1+1,J-1) (I-1,J-1) (ILJ -1) 

(I-1,J) 

convergence criteria is satisfied. 

The equation for any segment written implicit along row is given 

by : 

YJ•CI,J,[41 Z1•CI,J-1,K+1 = WJ   (14) 
where, Xj, Y, and Zj  are the coefficients of tridiagonal matrix 

and are also the coefficients of concentration of pollutants at 

(J-1)th Jth and (J+1)th stream tubes. W is a constant. 

So, there will be NC (number of columns) number of equations. 

Similarly the equation for any segment implicit along column can 

be written in the form : 

XL .0I-1,3,1+1 + Yr CI,J,K+I ' ZI CRI,J,D1 = WI  (15) 

where, AP BI and ZI are the coefficients of the tridiagonal 

matrix and are also the coefficients of concentration of 

pollutants at the (I-1)th, Ith, and (I+1)th row. WI  is a 
constant. 

4 . 5 FORMULATION OF X,Y,Z AND W MATRICES 

The matrices X,Y,Z, and W are formulated for defining 

spatial and temporal derivatives appearing in equation (13) by 

finite differences for the following conditions : 

Interior Segments  

Figure - 9 : Linkages of Segments for 
Interior Segments. 

Writing the equation (13) in Finite Difference form for the 
Fig.9 given above: 

4.5.1 Column-wise Solution 
Separating the coefficients of 0 14_1,

1+1, Clajg and CI,j41,p1 ; 
we have: 

16 



C.r.s-t.rnitz• F3Ca 

CI , J.K.,111.. Oily a Lep.r.j] . (1. O-L1-L2 ) +KA 0+ 

F1[ (1  ,J+1+13  I .J4-0 1  

-C 1, z , r(1. 0-L1-L2 ] • - C IC. Li+Cr...r-i.x. LeC1e1,,.7.1.,ni • Li. Fi. 

Fz . 13". [ 1, 0-L1-L3] Ly. F3. Pr. j_i 

+Cr_±,J..1,,r,i. Li . Fi . Or1,j+1.+C rei. • Fy• a ,z• [1.  13-L1-L2] 

R. At  
L2. F3.  CE1T-1+ A x. 

Ay .  Az   (16) 

where, 

= U11j4i  sUr,j+i  ; F = U .0 ; F3  = U .0 I,J 1,1 1,7-1 I,J-1 

Erci..7“)' HI.J.1. At 
E711.a_11 . . At 

Li- L 2  
A 1 . B.r.j r.J A1 

k1, j,1-Ax. A z j.,i Hz  J_1-A x. 

AZ,J+Az j.,i  
2 

A YeLY.I.J.  
2 

The coefficients of the matrix are; 
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ArrL2 F1 [ a 2".J-1.+13 .T. il-1] Y,.7-1. 0+F'2 . [Ct1.,7+8i, j] (1. O-L1-L2 ) +K. At 

ZcLi . cx.r.J.143/.„..0 

+Crri Li. Fi , a j., i  +Cr_i  , J.K+1 . F2 . a [1. 0-L1-L3 ] 

R. a t  . Ly • F2 • f  " 7-1+  A X . ay. az " . (17)  

Row-wise Solution 
Separating the coefficients of Cr.i.  /, Di , and C/41 K+1 ; 

' i.e. to ascertain the elements X YI' ' 7 an ' d we have; I I I  
Cm, J,K+1 t-F2 a I, A I 0--Li-L21 . +F2. [ a r, 

(1. +K. A th-Cin, ja.41(-Fg. 81,,J. (1. 0-L1-L2)) 

1. 0-L1-L2] +C1 1.7.1...K• K . L2  

+C141 ..7+1 r+1 • L1. • F1' P I. t7.1.+CLA ..7-1 Ksi. • Ly F34 Pr.J-1. 

+C1.J41.K+1(-111. F1.  [ a z,J41+13.1-,..7.1] i+Cr...T-tirdt-Lz• F3 • [ r.z-i+13.r.z-0 1  

R. a t   *C.r-11, K./ (111. • F1 • CE )+CI-1. J-1. /C+1.(C2 . F3 . Ax, A y,. Az J (18,). 

In which, the coefficients.; X1 , Y„ Zr  and WI  are; 



11-1-F2 . a". [ 1. 0-Li-L2] I Ye-11. 0+12 . [ a Lep"] . (1. 0-Li-L2 )+K. 

p". (1. 0-L1-L2 ) 

rc , j,k{ 1. 0--L1-L2 ] +Cr,a..±,x• Li+Cr.J-i..K. L.2 

Li• F. 1,.7•1+CiI+1,J-1,K.1.• 

+CI,J+1.Ke1t— L1• Fi•[ r. 3 /...r] )+C1....7-1..K.11-L3. 13' [ CtI,J-1.43/,J-1] 

R at  
+C.r_1_ji1.g.1(1.9.• F . a • 12. a.r. J-1.4 AS. aye. Lizj" (19) 

4.6 Neuman Boundary Segments  
The matrices X, Y, Z, and W for boundary segments are 

formulated on the basis of the mass balance within the segment 

discritized by the boundary segment, accounting for the known 

input/output concentration. The types of boundary segments are 

described in the figure below; 

  

0  

  

L.H.S. bottom corner segment. 
R.H.S. bottom corner segment. 
R.H.S. top corner segment. 
L.H.S. top corner segment 
Bottom middle segment. 
Vertical far segment. 
Top middle segment. 
.Vertical near segment. 

    

Applying the mass balance equations for each segment as follows; 

Inflow of pollutants - Outflow of pollutants 
= Change of concentration within the control volume. 

4.6.1 L.H.S. Bottom Corner Segment (Input receiving segment)  

where, 

X =0.0 
U =0.0 
H =0.0 144 =0.0 c1-1.1-11+1 C " 0 hm,144 =  

=0.0 c1+14-1,101 
C1-1,1,1141 & =0.0 CKAIJ+1 



..... • • . 
(I,3)  

 •  

(I,J-1) (I+1,J-1)  
 

• 

--0 (1+1,3+1) 

-01 

4.6.2 R.H.S. Bottom Corner Segment..  

           

1 m  
(I+1,J+1)  

  
 

           

   

(I-1,3+1) (I,J+1) 

  

           

           

              

              

              

           

. (1+1,J). 
m 

           

           

           

           

              

4.6.3 R.H.S. Top Corner Segment 

Where, 

X =0.0 
U =0.0 
H -1 =0.0 14 

c 
= CP14,11E1 
CD14+1,I01 

c =C 
- Kt 

D14-1,1+1 = 0.0 

4.6.4 L.H.S. Top Corner Segment 

Where, 
= 0.0 

UI4+1 = 0.0 
HLoin = 0.0 

CI4I4101-CI c
D14-1,1(41=d 

=C
14+vAM 

1414+10[44  

Where, 

= 0.0 
UI,J+1 =, 0.0 

I,J+I = 0.0 
cI-1,1+1,1+1 

0 =C
I-I J-I DI= 0' cI,6+Idl+1Itc1+1,J+1,DI 

= . 

(I+1,J -1) 

4.6.5 Bottom Middle Segments 

Where, 

X = 0.0 
U = 0.0 14-1 
11/4_1  = 0.0 

c
1-14-1J+1=C14-16(+10 

= cuirr-Lpl 

20 



(I, J+1) (I-1,J+1) 

(I,J -1) (I -1,J -1) 

(I-1,J) 

'1 
(I,J) In.. (I,J+1) 

m  
n..(I+1,J+1)  
U  

n..(I+1,J-1)  
M  
M 

(I+1,J) 

4.6.6 Vertical Far Segments 

Where, 

=C C1+101+1,101 .6,J+14+1 
CI+1,J,D1 1,1,P1 
C14I,J-1,101 CI,J-1,DI 

4.6.7 TOP Middle Segments  

Where, 

Z = 0.0 
Urojil  = 0.0 
H1041 =0.0 

=k1,Jud(d=cLP1.1(+1 
eItI,J+1,Kwu.0 

4.6.8 Vertical Near Segments  

(I, J+1.) (I+1,J+1) 

(I,J) (I+1,J) 

(I,J -1) (I+1,J -1) 

Where, 

= 0.0 c1-1,.41,1+1 
r: 0.0 Cl."

Joi“ 
c1-1„/_,J“ = 0.0 

5 . 0 SOLUTION TECHNIQUES 

5.1 FORMATION OF TRIDIAGONAL MATRICES 

A matrix is called a tridiagonal matrix if it has all its 

nonzero elements on the principal diagonal and in the positions 

immediately adjacent to the principal diagonal. 

Tridiagonal systems arise when differential equations are 

finite differenced. The system of equations which form the 

tridiagonal matrix can be written as; 

21 



YI'CI + Z1'C2 
= W1 — 

X .0 + Y2.C2 + Z2  .C3 
= 

'2 1 W2 
X3.C2  + Y3.C3  + Z3.C4 = W. . ... (20) 

. . . 

XN-1'CN-2 + YN-1 CN-1 + ZN-1 C 

XN.CN.1  + YN.CN  

This can also be written as; 

A.0 = W  (21) 

= wN-2 
= WI;  

where, A is the tridiagonal matrix; C and W are the vectors.and 

can be represented by: 

••••• 
•••• r— "'"" 

Y1 Z1 Cl W
1  

X2 Y2  Z2 C2 Wa  

X3 Z 3 C3  W3 

X11-1  N-1 z11-1 C WN-1 ....(22) 

YN 
••••• 4... -a 

5.2 CONVERGENCE CRITERIA 

Two types of convergence criteria have been used in the 

model to be fulfilled before computing concentration of 

pollutants. They are : 

i. convergence with respect to IADIE 

con:ergence with respect to time steps. 

5.2.1 Convergence with respect to IADIE 

In the alternate direction implicit explicit scheme, the 

final target is to get nearly true implicit solution. 

Mathematically this can be written as: 

LCI,J,1C.1( 111 ) -CI,J,K•1( t)  (23) 

m -->00 
where, Ci,J,I41(t) is the true implicit solution. 

In order to terminate the number of iterations, some pre-

decided convergence factor is assigned. If the sum of the 

difference of concentration between the current and preceding 

iteration is less than or equal to the convergence factor 

22 



assigned, the convergence level with respect to IADIE is said to 

be achievad. This can be explained mathematically as : 

!TIC/    (24) 
• 

where, 
: Pre-decided convergence factor. 

NR & NC : Number of rows and number of columns. 

(m) : Concentration of pollutants in the current 
iteration w.r.t. ADIE. 

C(m-1) : Concentration of pollutants in the 
preceding iteration w.r.t ADIE. 

5.2.2 Convergence with respect to time steps  

A time step is divided into increasing number of subtime 

steps for IADIE solution, till the desired convergence level is 

achieved, i.e., 

Yfic,   (25) 

where, 

Cujoul(KK+1) : Concentration of pollutants at the end 
of the current time step estimated by 
dividing the time step into KK+1 
number of subtime steps. 

CLIJ+1(KK) 
:Concentration of pollutants at the end 

of the previous time steps. 

g. : Pre-decided convergence level. 

6 . 0 Analysis of Results and Discussion 
The combined effects of advection and dispersion govern the 

transport of pollutants in a moving water. Advection is mainly 

responsible for displacement of pollutants in the direction of 

flow, while dispersion is responsible for spreading of pollutants 

along the three cartesian coordinates. 

It is apparent from the discussions made in sections 

3.1 and 3.2 that in case of nonconservative substai.ces, once the 

substances are completely mixed over the entire cross section, 

the effect of longitudinal dispersion is so small in comparison 

to the decay of substances that the term of dispersion can be 



overlooked and the downstream concentration profile can then be 

conceptualized by the first order decay as given by Eq.(1). The 

effects of dispersivity are mainly dominant in the initial 

period of pollutants transport because of the differential 

advection and cross sectional diffusion. Alternately, because of 

the concentration gradients between the adjacent layers the cross 

sectional dispersivity due to the transverse diffusion 

coefficient propagates the spreading of pollutants toward the 

otherside of river bank. The decay and transport of non-

conservative substances, in that case, depend upon the travel 

time of pollutants cloud within water body. The "travel time" 

is defined as the time taken by a pollutant to reach from the 

point of injection upto the point of complete mixing. The 

concentration of pollutants thus at any point would be equal to 

the exponential decay of the term (K.t) [ where, K = first 

order decay coefficient, T1; t = travel time, T ]. 

In order to assess the concentration of pollutant's cloud 

over different space and time in the initial period of pollutant 

transport, a "Numerical Model" using the finite difference 

schemes on one dimensional Advection-Dispersion-Decay-Sources 

equation has been conceptualized and described in section 4.1. 

It is assumed in the model that; i) transport of pollutants along 

the flow direction is due to the differential advection and 

depend upon the magnitude of local velocities of flow, while ii) 

spreading of pollutants in the other direction is due to the 

transverse diffusivity. 

For given velocity fields of a particular flow at any river 

cross section, the equi-velocity lines of any desired magnitude 

if drawn, will represent flow through number of stream tubes. If 

the river bed effects on velocity are ignored, and vertical lines 

are drawn based on the magnitude of velocity to form n number of 

stream tubes of area A1' A2' A3 An ,and a relative velocity 
respectively of; u'2, u'3 u'n are assigned in each 

stream tubes such that summation of total flow for the stream 

tubes is zero, the problem can then be solved forming the finite 

difference schemes for each segments formed dividing the total 

length into number of equal segments. The "relative velocity", 

here is defined as the difference of local velocity and the 

average cross sectional velocity. Thus, the average flow in the 

24 



stream tube may be moving at plus or minus for each time step in 

comparison to the other stream tube. Selection of the width of 

stream tubes which form the size of segment is an important 

factor to obtain the stab:lity of solution and to get the 

accuracy of solution. Larger the dimensions of stream tube means 

commitment of more error in the solution. Alternately, more 

number of stream tubes and segments would lead to better 

approximation of the velocity field and for that matter well 

conceptualization of transport process. The lengthofthe segment 

is determined from the eq.(11), in which the time step, CIA , 

determines the length of segment 

accordingly converted to units of 

depicted by the expression 

coefficient, E, is also 

selection of time step is  

and the advective velocities 

mesh points per time step as 

The mixing 

step. Thus, 

Selection of 

given in eq.(12). 

governed by the time 

an important factor. 

excessive higher/lower time step may lead to the unstability of 

solution. The physical significance of time step may be defined 

as; for example, if a higher time step is selected for a 

particular set of mesh points and for a given hydraulic 

conditions, the transverse mixing of pollutants due to the cross 

sectional diffusivity may be underestimated than the actual 

situation, in otherwords, the length of the initial period will 

be over estimated. For the smaller time step, it would be just 

opposite. It has been shown (Fischer, 1968) that a stable 

solution could be obtained if, for all stream tubes, 

En j. At <0 5  

 

(26) 

 

It was suggested by Fischer (1968) that in practice it is 

well to keep this ratio less than approximately 0.2. 

The concept derived in section 4.1 can be explained as : 

The mass transport between stream tubes per time step is 

computed by assuming that for the duration of the step the 

concentration gradient at the dividing surface equals the 

difference in convected concentrations at the mesh points divided 

by the distance between them; that is 

alf1.67,J*1) 
E na• j. Ait. At 

 (27) BI.  
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Where, QC14 is the difference in concentration between 
stream tubes J and J+1, i.e., [CI,J+1 C

1 
 ]. 
0T 

Since the mesh-point concentration is meant to represent the 

concentration within the entire stream tube, the change in 

concentration 6C at mesh point (I,J) is given by; 

1  
A I  

Ariz. (J.J+1.)-Alf.r.G7-1..J0  (28) 
.J• A x  

where, 
J+1 -C1  j] oGij  At 

From the Eq.(28) a new set of mesh points for the next time 

step is estimated from the previous time step using Eq.(13). 

one advective step followed by one diffusive step completes 

the computation for one time step. The method can be applied for 

any desired initial distribution; for example, a slug source can 

be modeled by setting all initial concentrations equal to zero 

except for one, a plane source can be modeled by setting all 

initial concentrations zero except for the concentrations on one 

line, which are all set to some constant value. A constant or 

variable rate of discharge can also be modeled. 

Based on the above concept a computer model has been 

developed, which is capable of demonstrate the spatial 

distribution of concentration of pollutants for varying input 

conditions. A flow chart of the computer program is given in 

Figure 10. For given. initial conditions and assumed boundary 

values, the problem is solved forming tridiagonal matrices as 

described by eqs. (21 & 22) with pre-decided convergence factors 

having convergence with respect to IADIE and convergence with 

respect to time steps. 

The model has been verified with the published data of the 

river Green-Duwamish at USA reported in the book "Mixing in 

Inland and Coastal Waters" (Fischer et al., 1979). The cross 

sectional velocity distribution and the contours of constant 

velocity for the river at Renton junction were given. The cross 

sectional velocity distribution and other hydraulic data are 

reproduced in Fig. 11. 

[ Units shown in Fig. 11 and mentioned in Table-1 are in 

F.P.S. system. The conversion factor is; 1 inch = 2.54 cm ] 
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Figure 11: The cross sectional velocity distribution at 
Renton Junction in the Green-Duwamish River, USA 
(Source: Fischer et al.,1979). 

The hydraulic data of the river are given in Table - 1. 

Table I : Hydraulic Data of the Green-Duwamish River, USA 
(Source : Fischer et al, 1979) 

Subarea Depth width Mean Velocity Mean velocity 
no. range (ft) in subarea in subarea 

(ft) (ft/sec) relative to 
mean x- section 
velocity 
(ft/sec) 

1 0.0 - 3.9 6.5 0.105 -0.799 
2 3.9 - 4.48 10.0 0.526 -0.378 
3 4.48- 4.50 10.0 0.986 0.082 
4 4.50- 5.16 10.0 1.091 0.187 
5 5.16- 5.28 10.0 1.196 0.292 
6 5.28- 8.00 10.0 1.148 0.244 
7 8.00- 4.72 10.0 0.766 -0.138 
8 4.72- 0.00 5.0 0.067 -0.837 

Total area = 339.25 sq. ft. 

Assuming the value of transverse mixing coefficient, Ey  = 

1.40 fL2/sec (7.98 m2/min ) and using the hydraulic data 

mentioned in Table-1 and other values as given below, the model 

is tested for the input conditions as shown in Fig.12. 
At-0.25-1. Omin A X Uj1. At 

K = 0.25 - 0.75 day 1. 
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Figure -12: Input Pollution Load 
Considered for Verification 
of the Model. 

Number of segments have been determined finding out the 

mixing length from the following expression (Eq. 29) and diving 

the mixing length by the pre-determined length of the segment 

obtained from the Eq.(11). 

U W-2  
X    (29) 

where, X = mixing Length. a 
Lc = a coefficient, value ranges 0.2 - 0.5. 
W = width of the river. 
E = transverse mixing coefficient. -1 U = average stream velocity. 

The number of segment (M),thus; 

ATT  (30) 

The termination criteria is considered, assuming the 

appropriate value from the range of values of 0.05 -0.5% and 

comparing with the sum of the difference of values of previous 

and current iteration ,if the difference is less than or equal 

to the pre-decided convergence factor, the values determined in 

the previous iteration are taken as the desired concentration of 

pollutants for that particular set of loading condition. Else, 

either iteration numbers are to be increased or a higher value 

of convergence factor is to be assumed. A convergence factor, 

= 10-3 and 10 number of iterations are used in this study. A 

constant pollution load at a rate equal to 25920 Kg/day 

29 



representing the concentration of pollutants 300 mg/l. [for an 

assume input flow rate of 1.0 m3/sec.] for a duration of 5 

minutes as depicted in Figure-12 is considered as input to the 

right bank of the river at the first segment, i.e., I = 1 and J 

= 1. A time step of 0.25 min. and 0.50 min.(15 sec. & 30 sec.) 

are considered for the iteration. Results of time step =0.25 min. 

and dispersivitY coefficient, Ey  = 7.98 m2/min are shown in 

Figures -13 & 14. 

Figures-13(b,c,d) and 14 (a,b,c,d)respectively represent 

plots of concentration profiles along the direction of flow, and 

at different locations in the transverse direction within the 

mixing length, 
 for the above mentioned loading and input 

conditions. It is apparent from Figures-13(b,c,d) which 

represent plots of concentration profile along flow direction 

respectively for the bank receiving the pollution load (as 

depicted in Figure-13(a)), at the centre of the river and, for 

the other bank of the river, that location of release of 

pollutants and transverse velocity dictate the concentration 

profiles along the flow direction. While from Figures -14 

(a,b,c,d) which indicate concentration profiles along the 

transverse direction at downstream locations of 25 meter, 50 

meter, 100 meter and 150 meter from the point of release, it 

could be observed that advective velocity coupled with 

dispersivity and fluctuation of transverse velocity w.r.t. 

average stream velocity govern the mixing of pollution. Thus, one 

can easily say that river hydraulics such as; transverse 

velocity, whether magnitude plus or minus w.r.t. cross sectional 

velocity, depth of flow, river width, and transverse mixing 

coefficient, are the important parameters that dictate the mixing 

and transport of pollutants in the initial period. It is 

estimated that pollutants cloud travel a maximum time of 35 min. 

in the initial period before arriving at the complete mixing. 

Within the travel time, pollutants of nonconservative nature get 

about 0.75% -2.0% decay for the assumed values of K = 0.25 - 0.75 

day-1. 
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7 . 0 CONCLUSIONS 

The effects of advection and dispersion on nonconservative 

substances have been studied. The assumption of complete mixing 

just after the point of release of pollutants and ignorance of 

the effect of longitudinal dispersion coefficient downstream of 

release which are commonly used in modeling of water quality may 

lead to a appreciable error in the estimation particularly for 

a large river. And thus require a due consideration. 

Later case i.e., the assumption of neglecting the 

longitudinal dispersion coefficient could be accepted when 

pollutants arrive at the stage of complete cross sectional mixing 

and concentration of pollutants at any time and at any location 

are accounted for by the first order growth or decay co-

efficients. In the initial period of mixing, the spreading and 

concentration of pollutants are governed both by the transverse 

diffusivity coefficient, and decay or growth rate of substances. 

A "Numerical Model" for the initial period of pollutants 

transport has been developed based on the Finite Difference 

Scheme, and solved using IADIE (Iterative Alternate Direction 

Implicit Explicit) technique to determine the spatial 

distribution of substances. It is noted that before arriving at 

the stage of complete mixing nonconservative substances undergo 

some decay equivalent to the exponential of multiple of decay 

coefficient and travel time of pollutants within the initial 

period. The model is verified with published data and found the 

results with reasonable accuracy. The model needs to be tested 

with different hydraulic and loading conditions. 
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