TR (BR) 142

EVAPORATION FROM LAYERED SOILS IN THE PRESENCE OF A WATER TABLE

NATIONAL INSTITUTE OF HYDROLOGY JAL VIGYAN BHAWAN ROORKEE - 247 667 (U.P.) INDIA 1995-96

PREFACE

A steady state flow problem of interest and importance is the upward movement of water from a water table and subsequent evaporation at the soil surface. This information is desirable when estimating water loss from soils by evaporation and estimating the amount of ground water available to plants due to the upward movement of water from a water table. Soils may also become saline due to the upward movement of saline ground water and its subsequent evaporation at the soil surface. To minimize the rate of salt accumulation and thus reduce the salinity hazard, attempts are usually made to lower the water table by pumping or by installation of drains. In order to determine what, depth to water table should be maintained, the relation between depth to water table, soil properties and evaporation rate must be known.

This report entitled "Evaporation from Layered Soils in the Presence of a Water Table" is a part of the research activities of 'Ground Water Assessment' division of the Institute. The purpose of this study is to estimate the steady state evaporation from layered soils with a high water table. The study has been carried out by Mr. C. P. Kumar, Scientist 'C' under the guidance of Dr. G. C. Mishra, Scientist 'F'.

Director

CONTENTS

PAGE NO.

	List of Figures	i
	List of Tables	i i
	Abstract	111
1.0	INTRODUCTION	1
2.0	REVIEW	6
3.0	PROBLEM DEFINITION	13
4.0	METHODOLOGY	14
	4.1 General Equation of Unsaturated Flow	14
	4.2 Initial and Boundary Conditions	16
	4.3 Soil Moisture Characteristics	19
	4.4 Finite Difference Approximation	22
	4.5 Estimation of Evaporation Rates	25
5.0	RESULTS	27
6.0	CONCLUSIONS	38
	REFERENCES	40
	APPENDIX - I	42
	APPENDIX - II	50
	APPENDIX - III	59
	APPENDIX - IV	60

LIST OF FIGURES

FIGURE	TITLE	PAGE NO.
1.	Relationships between the Soil Water	21
	Hydraulic Conductivity K for the two Soils used in the Study	
2.	Evaporation Rates from Layered Profiles of Yolo Light Clay over Sand as a Eurotion of	33
	Top Layer Depth and Three Water Table Depths	
з.	Evaporation Rates from Layered Profiles of Sand ver Yolo Light Clay as a Function of	34
	Top Layer Depth and Three Water Table Depths	

LIST OF TABLES

TABLE	TITLE	PAGE NO.
1.	Steady State Evaporation Rates from Layered Profiles of Yolo Light Clay over Sand	31
2.	Steady State Evaporation Rates from Layered	32

ABSTRACT

Evaporation of water from soil surface causes loss of water and is also responsible for salinizing the top layers of the soil. The danger of soil salinization becomes more acute in regions where a high ground water table exists. In order to minimize water losses as well as reduce the rate of soil salinization, one has to evaluate the effect of the depth of soil layers overlying the water table.

Evaporation from shallow water table through a homogeneous soil profile has been studied theoretically and experimentally by many workers. However, uniform soil profiles rarely occur in nature. It is more common to find the soils having well-defined layers differing from each other either in texture or in structure. Therefore, it becomes necessary to determine the effect of layered soils on evaporation from a shallow water table.

The purpose of this study is to estimate the steady state evaporation rates from layered soils in the presence of high water table under isothermal conditions. A finite difference numerical scheme based upon the one-dimensional Richards equation has been employed to estimate the evaporation rates from a two-layered soil profile overlying a shallow water table for appropriate initial and boundary conditions. The method takes into account the relevant atmospheric factors and soil moisture characteristics of the two layers. The effects of sequence and thickness of the soil layers and water table depth on the evaporation rates have been examined.

iii

1.0 INTRODUCTION

Evaporation in the field can take place from plant canopies, from the soil surface, or from a free-water surface. Evaporation from plants, called transpiration, is the principal mechanism of soil-water transfer to the atmosphere when the soil surface is covered with vegetation. When the surface is at least partly bare, evaporation can take place from the soil as well as from plants. These two interdependent processes are commonly lumped together and treated as if they were a single process, called evapotranspiration. In the absence of vegetation, and when the soil surface is subject to radiation and wind effects. evaporation occurs directly and entirely from the soil. It is a process which, if uncontrolled, can involve very considerable losses of water in both irrigated and unirrigated agriculture.

Evaporation of soil water involves not only loss of water but also the danger of soil salinization. This danger is felt most in regions where irrigation water is scarce and possibly brackish and where annual rainfall is low, as well as in regions with a high ground water table. Where a ground water table occurs close to the surface, continual flow may take place from the saturated zone beneath through the unsaturated soil to the surface. If this flow is more or less steady, continued evaporation can occur without materially changing the soil moisture content (though cumulative salinization may take place at the surface). In the absence of shallow ground water, on the other hand, the loss of water at the surface and the resulting upward flow of water in the profile will necessarily be a transient state process causing the soil to dry. A proper formulation of an evaporation process should

account for spatial and temporal variability, as well as for interactions with the above ground and below ground environment.

It is desirable to estimate the evaporation rates from bare land surfaces and to predict the variation of these rates with meteorological conditions or with man-imposed changes in the water table level. This estimate might be rather important in certain regions during the appraisal of ground water availability. For such purposes, it is often both permissible and useful to assume steady state of the hydraulic gradient driven upward flux of water and to neglect certain effects of soil temperature and of solute accumulations. The basic approaches required for the development of this method can be found in the literature. Convenient equations were suggested for describing hydraulic conductivity, the most relevant soil parameter, and from it methods were developed for evaluating soil-limited evaporation in cases of high water table. It was also shown how the effects of the soil factors on bare soil evaporation interact with the effects of the atmospheric parameters on bare soil evaporation. However, all the studies concerned themselves with homogeneous soils and mainly with cases involving liquid transfer.

In homogeneous profiles, the soil moisture characteristics are same everywhere. However, soil is frequently stratified near the surface, containing layers with markedly different water retention and water conducting properties. The mathematical description of water transport through unsaturated layered soil is very complex because of subtle effects that can occur at the interface between layers.

The layer of least permeability often has a dominant influence on the transport through the system. For example, even

though steep hydraulic head gradients are often present, flow through a series of layers of unsaturated soil can be nearly zero under conditions where large and nearly empty pores with small hydraulic conductivities are encountered. Such a condition exists where a wetting front moving through homogeneous soil encounters a layer of coarse sand or gravel. The hydraulic head of the soil just above the wetting front may be of the order of -100 cm of water and that in the dry sand below the front may be as low as -10^3 or -10^4 cm. Thus the potential gradient at the interface will be large. Despite this, the flow nearly drops to zero as the front reaches the coarse sand layer because there is very little water in fine pores in the sand and the large pores can not fill at the low matric potentials present in the upper region. Thus, the cross section for liquid flow is very small. Before any appreciable flow can occur, the hydraulic head in the upper layers of the finer textured soil must rise to a value near zero, at which time some of the pores or channels in the sand will begin to fill and the hydraulic conductivity of the lower layer will rise.

Coarse materials such as straw or other organic matter or holes in the soil created by burrowing insects and animals restrict, rather than aid, flow as long as the hydraulic potentials surrounding them are too low for them to fill with water. For this reason, dry soil often persists through the wet season beneath straw turned under by ploughing. Only when large pores and channels connect with the surface where free water can get to them or are beneath the water table, such channels contribute appreciably to liquid flow.

Fine pores in hard pans and clay pans also seriously restrict flow. Such materials become wet rapidly for short

distances when first contacted by water because of the high absorptive capacity of fine pores. However, as the distance through which water must move in fine pores increases, the rate of flow decreases, in tight clay it becomes extremely slow. Flow in such materials is often so slow that water table build up above them.

Water retention following wetting or redistribution of water is greatly affected by stratification. Clay pans and hard pans often create serious waterlogging because retention is so pronounced above such layers. Coarse layers act much the same as a check valve. Water tables can not be maintained above a coarse layer. However, since a coarse layer restricts flow at relatively high hydraulic potentials, retention of water above such layers often is appreciably more than it would be in the absence of such a layer.

The steady state flow equation describing upward movement of water from a water table and evaporation at the surface of a homogeneous soil has been solved for a number of different analytical expressions. However, it is of particular importance to determine how evaporation in the layered case may differ from the homogeneous case.

The actual evaporation rate is governed by the atmospheric conditions, thickness and transmitting properties of the soil layers and the water table depth. While the maximum possible (potential) rate of evaporation from a given soil depends only on atmospheric conditions, the actual flux across the soil surface is limited by the ability of the porous medium to transmit water from below.

In the present study, an attempt has been made to examine the effect of layered soil profiles on steady state evaporation rates from a shallow water table under isothermal conditions by using a finite difference numerical scheme for solution of the one-dimensional Richards equation. The evaporation rates are shown to be related to the water table depth and sequence and thickness of the soil layers.

the second rest and the part of the

where q is filly requir to the evalorization to conditions), h aution head (soil water pres conductivity of the soil, D soil water diffusivit water content and t height above the water table, shows that flow stopp (c = v) when dh/ot = 1. And adustume 12 40 40

$$\frac{d2}{x(m)} = 0 = \frac{2}{dx}$$

integration should give the relation between death an authors of witness

$$(4,5),\ldots \qquad \text{div} \frac{(n)^{N}}{p^{N}(d)^{N}} = \frac{N}{p^{N}(d)^{N}} = \frac{n}{p}$$

10.4

2.0 REVIEW

The steady state upward flow of water from a water table through the soil profile to an evaporation zone at the soil surface was first studied by Moore (1939). Theoretical solutions of the flow equation for this process were given by several workers including Gardner (1958), Anat et al. (1965) and Ripple et al. (1972).

The equation describing steady upward flow is

$$q = K(h) \left(\frac{dh}{dz} - 1\right)$$
 ...(2.1)

or
$$q = D(\Theta) \frac{d\Theta}{dz} - K(\Theta)$$
 ...(2.2)

where q is flux (equal to the evaporation rate under steady state conditions), h suction head (soil water pressure), K hydraulic conductivity of the soil, D soil water diffusivity, Θ volumetric water content and z height above the water table. The equation shows that flow stops (q = 0) when dh/dz = 1. Another form of equation (2.1) is

$$\frac{q}{\kappa(h)} + 1 = \frac{dh}{dz} \qquad \dots (2.3)$$

. Integration should give the relation between depth and suction or wetness :

$$z = \int \frac{dh}{1 + \frac{q}{\kappa(h)}} = \int \frac{\kappa(n)}{\kappa(h) + q} dh$$
 ...(2.4)

$$z = \int \frac{D(\Theta)}{K(\Theta) + q} d\Theta \qquad \dots (2.5)$$

In order to perform the integration in equation (2.4), we must know the functional relation between K and h, i.e. K(h). Similarly, the functions D(Θ) and K(Θ) must be known if equation (2.5) is to be integrated. An empirical equation for K(h), given by Gardner (1958), is

$$K(h) = ------ ...(2.6)$$

where the parameters a, b and n are constants which must be determined for each soil. Accordingly, equation (2.1) becomes

e = q =
$$\frac{a}{\frac{dh}{dz} - 1}$$
 ...(2.7)

where e is the evaporation rate.

With equation (2.6), equation (2:4) can be used to obtain suction distributions with height for different fluxes, as well as fluxes for different surface suction values. The steady rate of capillary rise and evaporation therefore depend on the depth of the water table and on the suction at the soil surface. This suction is dictated largely by the external conditions, since the greater the atmospheric evaporativity, the greater the suction at the soil surface upon which the atmosphere is acting. However, increasing the suction at the soil surface, even to the extent of making it infinite, can increase the flux through the soil only upto an asymptotic maximal rate which depends on the depth of the water table. Even the driest and most evaporative atmosphere can not steadily extract water from the surface any faster than the

or

soil profile can transmit from the water table to that surface. The fact that the soil profile can limit the rate of evaporation, is a remarkable and useful feature of the unsaturated flow system. The maximal transmitting ability of the profile depends on the hydraulic conductivity of the soil in relation to the suction.

Disregarding the constant b of equation (2.6), Gardner (1958) obtained the function

$$E_{1 \text{ im}} = \frac{Aa}{n} \qquad \dots (2.8)$$

where d is the depth of the water table below the soil surface, a and n are constants from equation (2.6), A is a constant which depends on n and E_{lim} is the limiting (maximal) rate at which the soil can transmit water from the water table to the evaporation zone at the surface.

The actual steady evaporation rate is determined either by the external evaporativity or by the water transmitting properties of the soil, depending on which of the two is lower, and therefore limiting. Where the water table is near the surface, the suction at the soil surface is low and the evaporation rate is determined by external conditions. However, as the water table becomes deeper and the suction at the soil surface increases, the evaporation rate approaches a limiting value regardless of how high external evaporativity may be.

Equation (2.8) suggests that the maximal evaporation rate decreases with water table depth more steeply in coarse-textured soils (in which n is greater) than in fine-textured soils. Nevertheless, a sandy loam soil can still evaporate water at an appreciable rate even when the water table is as deep as 180 cm.

The subsequent contributions of a number of workers have generally accorded with the above theory. Anat et al. (1965) developed a modified set of equations employing dimensionless variables. Their theory also leads to a maximal evaporation rate e varying inversely with water table depth d to the power of n:

Subsequently, Ripple et al. (1972) derived the following relation for soil-limited evaporation.

$$E_{00} \simeq K_{s} \begin{bmatrix} \frac{|h_{1/2}|}{-1/2} & \pi \\ L & n \sin \frac{\pi}{n} \end{bmatrix}^{n} \dots (2.10)$$

where,

E = soil-limited rate of evaporation from the soil
 (cm/day);

$$h_{1/2} = a \text{ constant soil coefficient representing h at}$$

 $K = -\frac{1}{2} - K_c \text{ (cm of water);}$

n = a soil coefficient (which usually ranges from 2 for clay to 5 for sands) in K-h relationship of equation (2.6).

Equation (2.10) is similar to the formulas for E_{1im} given without derivation by Gardner (1958) for $n = -\frac{3}{2}$, 2, 3, 4 and yields identical numerical coefficients.

The equations given above deal with the movement of soil water in the liquid phase only. Under isothermal conditions, if the water content is above the wilting point, any vapour pressure gradient present in the soil will be sufficiently small so that movement in the vapour phase can be neglected. In the case of evaporation from a soil, however, if the potential evaporation rate is appreciably greater than the rate at which water can be transmitted from the water table to the soil surface, the soil near the surface will dry out. A vapour pressure gradient will be set up near the soil surface, causing movement of water in the vapour phase and thus allowing the soil to dry below the surface. Under these conditions, the movement of water in the vapour phase must be taken into account.

The effect of a surface mulch upon steady-state evaporation can be treated in a simple manner. For this purpose, a mulch is defined as a medium which transports water in the vapour phase only. The steady-state rate of evaporation from a soil with a surface mulch should be inversely proportional to the thickness of the mulch (Gardner, 1958).

A theoretical analysis of steady evaporation from **a** two layered soil profile was carried out by Willis (1960), with the following assumptions :

- (a) the steady flow through the layered profile is governed only by the transmission properties of the profile (external evaporativity taken to be infinite);
- (b) matric suction is continuous at and through the interlayer boundary, though wetness and conductivity may be discontinuous (i.e., change abruptly);

(c) the same empirical K(h) function given by equation (2.6) holds for both layers but the values of parameters a, b and n are different; and

(.d) each soil layer is internally homogeneous.

With these assumptions, equation (2.4) leads to

where L and d are the thicknesses of bottom and top layers respectively: The integral in this equation relates water table depth (L+d) to the suction at the soil surface for any given evaporation rate. By assuming that the suction at the soil surface is infinite, one can calculate the limiting (maximal) evaporation rate for any given water table depth and profile layering sequence. Willis developed a graphical method for obtaining the necessary solution.

All of the above treatments apply to cases in which soil properties are the sole factor determining the evaporation rate. A more realistic approach should include cases in which meteorological conditions can also play a role. A more flexible treatment of steady state evaporation from multilayer profiles might also be based on numerical, rather than analytical or graphical, methods of solution. Such an approach was developed by Ripple et al. (1972). Their procedure makes it possible to estimate the steady state evaporation from bare soils (including layered ones) with a high water table. The required field data include soil moisture characteristic curves, water table depth,

standard elevation records of air temperature, air humidity and wind velocity. The theory takes into account both the relevant atmospheric factors and the soil's capability to transmit water in liquid and vapour forms. The possible effects of thermal transfer (except in the vapour phase) and of salt accumulation were neglected.

0.0

3.0 PROBLEM DEFINITION

The objective of the present study is to determine the evaporation from shallow water tables through a two-layered soil profile under isothermal conditions on the basis of solutions of the water flow equation. The steady state upward water flow from a shallow water table through the soil toward its surface is described by the nonlinear Richards equation. A numerical model (finite difference scheme) is used for solving the partial differential equation describing one-dimensional water flow through the unsaturated porous medium. Steady state moisture profiles are obtained for the given initial and boundary conditions and the steady state evaporation rates are estimated by using Darcy's law.

The evaporation rate can be limited either by the external evaporative conditions or by the maximal rate at which the soil can transmit water to its surface. If the water table is near the soil surface, the external conditions will govern the evaporation rate, whereas if the water table becomes deeper, the evaporation rate approaches a limiting value which is determined by the soil profile capabilities of water transmission regardless of the external conditions. The effect of water table depth on the steady evaporation rate is therefore examined by varying depth of the water table. The effects of sequence of the two soil layers and their thicknesses on the evaporation rates are also determined.

4.0 METHODOLOGY

Most of the processes involving soil water flow in the field and in the rooting zone of most plant habitats, occur while the soil is in unsaturated condition. Unsaturated flow processes are in general complicated and difficult to describe quantitatively, since they often entail changes in the state and content of soil water during flow. Such changes involve complex relations among the variable water content, suction and conductivity, which may be affected by hysteresis. The formulation and solution of unsaturated flow problems very often require the use of indirect methods of analysis, based on approximations or numerical techniques.

4.1 General Equation of Unsaturated Flow

A proper physical description of water flow in the soil requires that three parameters be specified : flux, hydraulic gradient and conductivity. Knowledge of any two of these allows the calculation of the third, according to Darcy's law. This law states that the flux equals the product of conductivity by the hydraulic gradient. Darcy's law has been found to apply for unsaturated as well as saturated soils but the pressure gradient at unsaturation becomes a suction gradient and the hydraulic conductivity is no longer constant but a function of water content or suction. Since the conductivity depends on the number, sizes and shapes of the conducting pores, its value is greatest when the soil is saturated and decreases steeply when the soil water suction increases and the soil loses moisture. Darcy's law

suffices to describe water flow under steady state conditions but must be combined with the continuity equation to describe unsteady (transient state) flow. According to Darcy's law, for one-dimensional vertical flow, the volumetric flux $q (cm^3/cm^2/h)$ can be written as

$$q = -K \frac{\partial}{\partial z} (h - z) \quad (cm/h)$$

$$q = -K (\frac{\partial h}{\partial z} - 1) \quad (cm/h) \quad \dots (4.1)$$

where K is the hydraulic conductivity (cm/h), h is the soil water pressure head (relative to the atmosphere) expressed in cm of water and z is the gravitational head (cm) considered positive in downward direction.

or

In order to get a complete mathematical description for unsaturated flow, we apply the continuity principle (law of conservation of matter)

$$\frac{\partial \Theta}{\partial t} = -\frac{\partial g}{\partial z} \qquad (/h) \qquad \dots (4.2)$$

where \ominus is soil moisture content expressed in cm^3/cm^3 and t is time in hours.

Substitution of equation (4.1) into equation (4.2) yields the partial differential equation

$$\frac{\partial \Theta}{\partial t} = \frac{\partial}{\partial z} \left[K \left(\frac{\partial h}{\partial z} - 1 \right) \right] \qquad \dots (4.3)$$

Equation (4.3) is a second order, parabolic type of partial differential equation (known as Richards equation) which is

non-linear because of the dependency of K and h on Θ (linearity means that the coefficients in a differential equation are functions of the independent variables z and t only). To avoid the problem of the two dependent variables Θ and h, the derivative of Θ with respect to h can be introduced, which is known as the specific water capacity C

$$C = \frac{dE}{dh}$$
 , (/cm) ...(4.4)

In equation (4.4), a normal instead of a partial derivative notation is used, because h is considered here as a single value function of $\frac{1}{2}$ (no hysteresis).⁹Writing

$$\frac{\partial \Theta}{\partial t} = \frac{d\Theta}{dh} \cdot \frac{\partial h}{\partial t} \qquad \dots (4.5)$$

and substituting equation (4.4) into equation (4.3) yields

$$C(h) \frac{\partial h}{\partial t} = \frac{\partial}{\partial z} [K(h) (\frac{\partial h}{\partial z} - 1)] \qquad \dots (4.6)$$

In equation (4.6), the coefficients C and X are functions of the dependent variable h, but not functions of the derivatives $\partial h/\partial t$ and $\partial h/\partial z$. Written in this form, equation (4.6) provides the basis for predicting soil water movement in layered soils of which each layer may have different physical properties.

4.2 Initial and Boundary Conditions

To obtain a solution for the one-dimensional vertical flow, equation (4.6) must be supplemented by appropriate initial and boundary conditions.

As initial condition (at t=0), the pressure head is specified as a function of the depth z

$$h(z, t=0) = h_0$$
 ...(4.7)

If hysteresis is not considered, this condition is equivalent to

 $\Theta(z, t=0) = \Theta_0$...(4.8)

One can easily obtain the value of h (and vice versa) from the expression, $h = f(\Theta)$.

To describe the boundary conditions, one can distinguish between three types :

(a) Dirichlet condition : specification of the dependent variable, the pressure head

$$h(z=0, t) = h_{u}$$

 $h(z=L, t) = h_{1}$
...(4.9)

These conditions are equivalent to

$$\begin{array}{l} \ominus (z=0, t) = \ominus_{u} \\ \ominus (z=L, t) = \ominus_{1} \end{array}$$
 ...(4.10)

(b) Neumann condition : specification of the derivative of the pressure head. For the soil water problem, this condition means a specification of the flow through the boundaries

$$q(t) = -K(h) \left(\frac{\partial h}{\partial z} - 1\right)$$
 ...(4.11)

(c) Mixed condition : a combination of the first two types. In particular, this can specify h at the lower boundary and q at the upper boundary.

For the present study, the initial and boundary conditions have been defined as follows.

I. Initial condition :

 $h(z,0) = h_0$ for $z \ge 0$, t = 0 ...(4.12) (approximate equilibrium moisture profile)

II. Upper boundary condition :

If the relative humidity (f) and the temperature of the air (T) as a function of time are known, and if it may be assumed that the pressure head at the soil surface is at equilibrium with the atmosphere, then h(0,t) can be derived from the thermodynamic relation (Edlefson and Anderson, 1943).

$$h(0,t) = \frac{RT(t)}{Mg} \ln [f(t)]$$
 ...(4.13)

where R is the universal gas constant $(8.314 \times 10^7 \text{ erg/mole/K})$, T is the absolute temperature (K), g is acceleration due to gravity . (980.665 cm/s²), M is the molecular weight of water (18 gm/mole), f is the relative humidity of the air (fraction) and h is in bars. Knowing h(0,t), $\Theta(0,t)$ can be derived from the soil water retention curve.

III. Lower boundary condition :

The phreatic surface acts as lower boundary of the system in case of evaporation from shallow water table.. The lower boundary condition has therefore been set as

$$h(z=L, t) = 0$$
 ...(4.14)

where L is the depth of the ground water table.

4.3 Soil Moisture Characteristics

For the present study, functional relations, as reported by Haverkamp et al. (1977), for characterizing the hydraulic properties of two soils, sand and yolo light clay, were used. They compared six models, employing different ways of discretization of the non-linear infiltration equation in terms of execution time, accuracy and programming considerations. The models were tested by comparing water content profiles calculated at given times by each of the model with results obtained from infiltration experiments in a sand column. All models yielded excellent agreement with water content profiles measured at various times.

The infiltration experiments were done in the laboratory using a plexiglass column, 93.5 cm long and 6 cm inside diameter, uniformly packed with sand to a bulk density of 1.66 gm/cm³. The column was equipped with tensiometers at depths of 7, 22, 37, 52. 67 and 82 cm below the soil surface. Each tensiometer had its own pressure transducer. The changes in water content at different depths were obtained by gamma ray attenuation using a source of Americium-241. A constant water pressure (Θ = 0.10) was maintained at the lower end of the column, a constant flux (13.69 cm/h) was imposed at the soil surface (z = 0) and initial condition as Θ = 0.10 throughout the depth. The hydraulic conductivity and water content relationship of the soil was obtained by analysis of the water content and water pressure profiles during transient flow. The soil water pressure and water content relationship was obtained at each tensiometer depth by correlating tensiometer readings and water content measurements during the experiments.

The following analytical expressions, obtained by a least square fit through all data points were chosen for characterizing the soil (sand) :

$$K = K = \frac{A}{A + |h|^{3}}; \qquad \dots (4.15)$$

Ks	Ξ	34 cm/h,
A	Ξ	1.175 ×10 ⁶ ,
⁽³ 1	H	4.74.

and

 $\Theta = \frac{\alpha (\Theta - \Theta r)}{\alpha + |h|^{\beta} 2} + \Theta r;$...(4.16)

> $\Theta_{s} = 0.287,$ $\Theta_{r} = 0.075,$ $\alpha = 1.611 \times 10^6$, ₿₂ = 3.96.

where subscript s refers to saturation, i.e. the value of Θ for which h = 0, and the subscript r to residual water content.

The soil characteristics of yolo light clay are given in equations (4.17) and (4.18), using the same representation as in the previous case. The data points for ⊕(h) were taken from Philip (1969, pp. 221), values for $K(\cong)$ were presented by Philip (1957, pp. 353), points for K(h) were determined from $\Theta(h)$ and K(Θ), as reported by Haverkamp et al. (1977).

$$K = K_{s} - \frac{A}{A + |h|^{\beta} 1}; \qquad \dots (4.17)$$

$$K_{s} = 4.428 \times 10^{-2} \text{ cm/h},$$

$$A = 124.6,$$

$$\beta_{1} = 1.77.$$

and
$$\Theta = \frac{\alpha (\Theta - \Theta r)}{\alpha + (\ln|h|)^2} + \Theta r$$
; for $h < -1$ cm
 $\alpha + (\ln|h|)^2 + \Theta r$; (4.18)
 $\Theta = 0.495,$
 $\Theta = 0.124,$
 $\alpha = 739,$
 $\beta_2 = 4.$
 $\Theta = \Theta_s$
for $h \ge -1$ cm

The functional relationships represented by the above equations describe fairly well the data, as tabulated by Philip, except near h = -100 cm for the K(h) curve. Also the diffusivity values derived from equations (4.17) and (4.18) using $D(\oplus) =$ $K(\oplus)/C(\oplus)$ and $C(\oplus) = d\Theta/dh$ are somewhat different from those presented by Philip (1957, pp. 353), particularly near Θ_{e} .

Figure 1 presents the relationships between the soil water pressure h, the water content \oplus and the hydraulic conductivity K for the two soils used in this study. These relations were used to estimate the evaporation rates from various combinations of layered soil profiles.

4.4 Finite Difference Approximation

Equation (4.6) is a non-linear partial differential equation (PDE) because the parameters K(h) and C(h) depend on the actual solution of h(z,t). The non-linearity of the equation causes problems in its solution. Analytical solutions are known for special cases only. The majority of practical field problems can only be solved by numerical methods. In this respect, one can use either explicit or implicit methods. Although an implicit approach is more complicated, it is preferable because of its better stability and convergence. Moreover, it permits relatively large time steps thus keeping computer costs low. For a given grid point at a given time, the values of the coefficients C(h) and K(h) can be expressed either from their values at the preceding time step (explicit linearization) or from a prediction at time $(t+1/2 \Delta t)$ using a method described by Douglas and Jones, 1963 (implicit linearization).

Let us now solve equation (4.6) by a finite difference technique and appropriate initial and boundary conditions. We have

	$c \frac{\partial h}{\partial t}$	=	$\frac{\partial}{\partial z}$ [K $(\frac{\partial h}{\partial z} - 1)$]	
or	C đh	=	$\frac{\partial K}{\partial z} \left(\frac{\partial h}{\partial z} - 1 \right) + K \frac{\partial^2 h}{\partial z^2}$	
or	C đh K đt	н	$\frac{\partial^2 h}{\partial z^2} + \frac{1}{\kappa} \frac{\partial \kappa}{\partial z} \left(\frac{\partial h}{\partial z} - 1 \right)$	(4.19)

Using implicit evaluation of the coefficients at time $(t+1/2 \ \Delta t)$, that is values for K and C are obtained at time $(t+1/2 \ \Delta t)$, then pressure distribution is evaluated at time $(t+\Delta t)$. The partial differential equation is approximated by a finite difference equation replacing ∂t and ∂z by Δt and Δz , respectively.

Prediction (estimation of C_i^j and K_i^j)

From equation (4.19), by taking time step as $\Delta t/2$, we have

$$\frac{2c_{i}^{j}}{\kappa_{i}^{j}} \cdot \frac{h_{i}^{j+1/2} - h_{i}^{j}}{\Delta t} = \frac{h_{i+1}^{j+1/2} - 2h_{i}^{j+1/2} + h_{i-1}^{j+1/2}}{(\Delta z)^{2}}$$
$$+ \frac{1}{\kappa_{i}^{j}} \cdot \frac{\kappa_{i+1}^{j} - \kappa_{i-1}^{j}}{2\Delta z} \left[\frac{h_{i+1}^{j} - h_{i-1}^{j}}{2\Delta z} - 1 \right]$$

where i refers to depth and j refers to time. Rearranging the terms, we get

$$= \frac{\Delta t}{(\Delta z)^2} h_{i-1}^{j+1/2} + \left[\frac{2C_i^j}{\kappa_i^j} + \frac{2\Delta t}{(\Delta z)^2} \right] h_i^{j+1/2} - \frac{\Delta t}{(\Delta z)^2} h_{i+1}^{j+1/2}$$

$$= \frac{2C_i^j}{\kappa_i^j} h_i^j + \frac{1}{2} \frac{\kappa_{i+1}^j - \kappa_{i-1}^j}{\kappa_i^j} \frac{\Delta t}{\Delta z} \left[\frac{h_{i+1}^j - h_{i-1}^j}{2\Delta z} + \frac{h_{i-1}^j}{2\Delta z} + \frac{h_{i+1}^j}{2\Delta z}$$

Correction (estimation of h_1^j)

From equation (4.19), by taking time step as Δt , we have

Rearranging the terms, we get

111/0

$$-\frac{1}{2} \frac{\Delta t}{(\Delta z)^2} \frac{j+1}{h_{i-1}} + \frac{c_{i-1/2}^{j+1/2}}{(\Delta z)^2} + \frac{\Delta t}{(\Delta z)^2} \frac{j+1}{h_{i-1}} - \frac{1}{2} \frac{\Delta t}{(\Delta z)^2} \frac{j+1}{h_{i+1}}$$

$$= -\frac{i}{\kappa_{i}^{j+1/2}} - h_{i}^{j} + \frac{1}{2} - \frac{\Delta t}{(\Delta z)^{2}} [h_{i+1}^{j} - 2 h_{i}^{j} + h_{i-1}^{j}]$$

$$\begin{array}{c} \kappa_{j+1/2}^{j+1/2} - \kappa_{j+1/2}^{j+1/2} & h_{j+1/2}^{j+1/2} - h_{j+1/2}^{j+1/2} \\ + \frac{1}{2} - \frac{j+1}{2} & \frac{j+1/2}{\kappa_{j}^{j+1/2}} & \frac{\Delta t}{\Delta z} \begin{bmatrix} -\frac{j+1/2}{2} & -\frac{j+1/2}{2} \\ -\frac{j+1}{2} & \frac{j+1/2}{2} \end{bmatrix} & \dots (4.21) \\ \kappa_{j}^{j+1/2} & \frac{\Delta t}{2} \end{bmatrix}$$

When equation (4.20) or (4.21) is applied at all nodes, the result is a system of simultaneous linear algebraic equations with a tridiagonal coefficient matrix with zero elements outside the diagonals and unknown values of h. In solving this system of equations, a so-called direct method was used by applying a tridiagonal algorithm of the kind discussed by Remson et al. (1971).

4.5 Estimation of Evaporation Rates

Steady state evaporation rates from the layered profiles were estimated by applying equation (2.1) for two vertically adjacent nodal points after obtaining the equilibrium moisture profile for the given set of water table depth and thickness of the top soil layer.

$$q = \kappa_{i+1/2}^{j} (-\frac{h_{i+1}^{j} - h_{i}^{j}}{\Delta z} - 1) \cdots (4.22)$$

Geometric mean of K was taken following suggestions of Haverkamp and Vauclin (1979). Theoretically, we should get the same evaporation rates by considering any two vertical adjacent nodal points for the steady state condition. However, small variations may be observed due to values of K being not properly represented over the depth interval chosen. Therefore, arithmetic mean of computed evaporation rates at any time was taken by considering all nodes in succession for applying equation (4.22). Various sets of water table depths and thicknesses of the two soil layers were considered for the study.

The computer code, for discretization scheme used in the model and estimation of steady state evaporation rates from layered soils in the presence of a water table, as per the procedure described above, has been written in FORTRAN language and presented in Appendix-I and Appendix-II for the two soil layering sequences.

5.0 RESULTS

In a bare soil with a shallow water table, subject to atmospheric evaporation, steady flow can take place from the ground water source below to the evaporation sink above. When the water table is very near to the soil surface, and the soil transmits water readily, the actual evaporation rate will be limited by external evaporativity (i.e., the micrometeorological conditions). When the water table is relatively deep, the water-transmitting properties of the profile are likely to be limiting, and thus determine the evaporation rate. Capillary rise from a water table and evaporation at the soil surface entail the hazard of progressive salinization, even though this hazard is not always immediately apparent at the surface. To avoid this hazard, which is most severe in fine textured soils under irrigation, artificial ground water drainage may be necessary. The best way to conserve soil moisture against evaporation is to cause it to move as deeply as possible into the profile, by proper regulation of the irrigation regimen and by controlling the initial evaporation rate so as to allow maximal time for the post-irrigation redistribution of soil water.

The numerical model described in section 4.4 was tested by comparing water content profiles calculated at given times with results obtained from quasi-analytical solution of Philip subject to condition of a constant pressure at the soil surface ($\Theta = 0.267$ cm³/cm³). The infiltration profiles at various times for infiltration in the sand (one of the two soils under consideration) obtained by quasi-analytical solution of Philip, were reported by Haverkamp et al. (1977). The model yielded good

agreement with water content profiles at various times (Kumar and Mishra, 1991).

The present study was carried out for bare surface (i.e. no vegetation) and therefore transpiration by plants was not taken into account. The sub-surface profile was divided into uniform layers of thickness 4 cm each (depth interval, Δz) down to the water table position which was varied from 60 cm to 140 cm below the soil surface.

Since the steady state evaporation rates are estimated by considering the two vertically adjacent nodal points (equation 4.22), the size of the depth interval plays an important role. It was found that the numerical scheme is stable only when

$$\frac{\Delta t}{(\Delta z)^2} \leq 2.5 \qquad \dots (5.1)$$

where Δt is the time step (seconds) and Δz is the depth interval (cm). Keeping in view the stability of the numerical scheme, the time step, At was taken as 40 seconds during the entire study period. Uniform evaporative conditions (temperature = 25°C, relative humidity = 0.75) were assumed for the study. The value of potential evaporation was obtained through Meyer's equation (for T = 25° C, relative humidity = 0.75 and wind speed = 10 miles/hour) as 5.99 mm/day. Therefore, the maximum limit of evaporation from soil surface was imposed as the equivalent 0.025 cm/hour.

The following assumptions were made in carrying out the study :

i) The water table was considered as static at the lower boundary of unsaturated zone.

- ii) Soil air was regarded as a continuous phase, essentially at atmospheric pressure.
- iii) K(h) and & were assumed to be single-valued, non-decreasing functions of h.
- (iv) The matric suction was assumed to be continuous at and through the interlayer boundary.
- (v) Each of the two soil layers was assumed to be internally homogeneous with respect to its hydraulic properties.
- vi) Thermal and osmotic gradients were assumed to be negligible.

For the given external evaporative conditions, water table depth and the layered soil profiles, the equilibrium moisture profile was obtained by using the numerical scheme presented in section 4.4 and assuming the pressure head at the soll surface to in equilibrium with the surrounding atmosphere be (h(0,t) = -396.14 cm). The initial and boundary conditions were defined by the equations (4.12), (4.13) and (4.14) respectively. The rate of loss of water (Darcian flux q) served as a measure of the evaporation rate, once the steady state was attained. Ample time was allowed for steady state to be attained. The values of soil water pressures at different nodes during consecutive time steps gave assurance that steady state had been attained. At steady state, the rate of loss of water (the flux q), which is approximately the same at every depth, equals the evaporation rate.

The evaporation rates under each set of water table depth and soil layerings were evaluated by using computer programs (Appendix-I and Appendix-II). A sample of the input data to the model and corresponding output are given in Appendix-III and Appendix-IV respectively.

In order to examine the possible behaviour of layered profiles consisting of sand and yolo light clay, the dependence of steady evaporation rate upon top layer thickness was determined for various ground water depths. The computed results are given in tables 1 and 2. The variations of evaporation rates from layered profiles as a function of top layer depth and three water table depths are also presented in figures 2 and 3 for the two soil layering sequences. The evaporation rates for homogeneous soil profiles (i.e., top layer thickness = 0) are also indicated for comparison.

For the case of yolo light clay over sand (table 1 and figure 2), the top layer was found to have little effect on the evaporation rate when ground water is at a depth of 140 cm. However, for ground water depth of 120 cm, the evaporation rate increases markedly as the top layer thickness increases. For ground water depth of 100 cm, the evaporation occurs at potential rate (6 mm/day) for the top layer thickness greater than 20 cm.

For the case of sand overlying yolo light clay (table 2 and figure 3), the evaporation rate is seen to fall marginally upto top layer thickness of around 14 cm, for ground water depth of 100 cm. With increase in the top layer thickness beyond 14 cm, the evaporation rate increases gradually. However, for ground water depth of 80 cm, the evaporation rate marginally falls upto top layer thickness of around 10 cm, increases steeply thereafter and attains potential rate at top layer thickness of around 42 cm. For ground water depth of 60 cm, the effect of top layer thickness becomes more pronounced, the decrease in rate being upto top layer thickness of around 5 cm and attaining potential rate at top layer thickness of only 18 cm.
Table 1 : Steady State Evaporation Rates from Layered Profiles of Yolo Light Clay over Sand

Thickness of	Evaporation Rates (mm/day)		
Top Layer (cm)	L = 100 cm	L = 120 cm	L = 140 cm
0	4.030484	1.699340	0.814898
6	4.462968	1.875703	0.899408
10	4.840748	2.010576	0.958741
14	5.284893	2.161296	1.019669
18	5.809570	2.331051	1.086894
22	6.000000	2.522819	1.160336
26	6.000000	2.740535	1.240665
30	6.000000	2.985332	1.329966
34	6.000000	3.267940	1.429026
38	6.000000	3.590603	1.537989
42	6.000000	3.966448	1.660899
46	6.000000	4.400203	1.800100
50	6.000000	4.906572	1.955429
	Thickness of Top Layer (cm) 0 6 10 14 18 22 26 30 34 38 42 46 50	Thickness of Top Layer (cm)Evapora L = 100 cm0 4.030484 6 4.462968 10 4.840748 14 5.284893 18 5.809570 22 6.00000 26 6.00000 30 6.00000 34 6.00000 38 6.00000 46 6.00000 50 6.00000	Thickness of Top Layer (cm)Evaporation Rates (mm, of L = 100 cm0 4.030484 1.699340 6 4.462968 1.875703 10 4.840748 2.010576 14 5.284893 2.161296 18 5.809570 2.331051 22 6.000000 2.522819 26 6.000000 2.985332 30 6.000000 3.267940 38 6.000000 3.966448 46 6.000000 4.400203 50 6.000000 4.906572

Table 2 : Steady State Evaporation Rates from Layered Profiles of Sand over Yolo Light Clay

S.No.	Thickness of	Evaporation Rates (mm/day)		
	Top Layer (cm)	L = 60 cm	L = 80 cm	L = 100 cm
1	0	1.833106	1.088800	0.705278
2	6	1.685597	0.992043	0.647764
3	· 10	2.307044	0.954659	0.590985
4	14	4.937681	1.200225	0.582285
5	18	6.00000	1.720937	0.644286
6	22	6.000000	2.418169	0.766910
7	26	6.000000	3.202290	0.931421
8	30	6.000000	4.005234	1.119970
9	34	6.000000	4.789237	1.321853
10	38	6.000000	5.540245	1.526910
11	42	6.000000	6.000000	1.730477
12	46	6.000000	6.000000	1.930086
13	50	6.000000	6.000000	2.122212

The figures 2 and 3 also indicate that for deeper water tables, the evaporation rates were independent of the external evaporativity (6 mm/day). For shallower water tables, the evaporation rates followed the external "potential" rate as the top layer thickness was increased. It should be emphasized that the above results have not been subjected to empirical testing in the laboratory and field.

The significance of these results is that the presence of a fine-textured soil overlying a coarse-textured one, may increase the evaporative water loss for a given ground water depth. This effect will become more pronounced as the ground water becomes shallower. It is due to the higher unsaturated hydraulic conductivity of the finer material at the high suction values which prevail near the surface of the soil profile during evaporation. If the sequence of layers is a coarse-textured soil overlying a fine-textured one, the evaporative loss can be slightly reduced in case of thin top layers for corresponding water table depths. The effect of a tilled zone on the evaporation loss, as compared to a homogeneous soil profile, can thus be anticipated. The tilled top layer acts as if the soil has a coarse-textured layer on top, even though its texture is homogeneous. This implies that tillage operations can reduce evaporation and salinization to some extent in regions having shallow water tables.

The rate of accumulation of soluble salts due to upward movement of saline ground water can be obtained by multiplying the evaporation rate with salt concentration of the ground water. Even though the evaporation rate may be small, a significant quantity of salts may accumulate over a long period of time. If a crop is

present, the above procedure may be used by taking bottom of the root zone as the upper boundary. The average suction at this point serves as the upper boundary condition. Then the amount of water and soluble salts moving up from a water table into the root zone can be calculated.

The above procedure, however, does not take into account the possibility that total hydraulic resistance or impedance to water flow of the entire soil profile may also include the existence of an inter-layer boundary impedance. The relation of the evaporation rate, e to the total soil profile impedance, ΣR can be given by

$$e = -\frac{\Delta h}{\Sigma P} \qquad \dots (5.2)$$

where Δh is the total hydraulic head difference between the water table and the soil surface. The total hydraulic impedance, ΣR is the sum of the impedances of the various layers. The impedance for any particular layer i is defined by the ratio $l_i/\overline{K}(h)_i$, where l_i is the layer thickness and $\overline{K}(h)_i$ its mean weighted hydraulic conductivity. The mean weighted conductivity, $\overline{K}(h)$ can be calculated by using the equation, $\overline{K}(h) = [JK(h)dh]/[Jh(1)d1]$. Thus the total hydraulic impedance is given by

 $\Sigma R = R_{\rm B} + R_{\rm T} + R_{\rm Int} \qquad \dots (5.3)$

where R_B and R_T are the impedances of the bottom and top layers respectively and R_{Int} is the possible impedance of the interlayer contact zone.

Under natural conditions, abrupt textural or structural discontinuity does not exist at the interlayer and it is more

common to see a transition zone between the layers. However, any transition zone between the soil layers, howsoever gradual, is likely to exhibit differences in its hydraulic properties compared to those of either layer and thus acts as an additional soil layer having an impedance of its own.

Steady state conditions were assumed in this study, though the numerical model permits variable climatic parameters i.e. temperature and relative humidity. In nature, however, the systems considered are seldom in a steady state condition, principally because of the variations in meteorological conditions, soil salt content and water table depth. The changes in soil salt content and water table depth are relatively slow and therefore their short-period effects might be negligible. Their long-range influences, however, could be of considerable importance and should be taken into account, with different experimentally determined soil parameters and measured or predicted water table depths. Also under various conditions, the thermal transfer of water might significantly change the evaporation rate. In this study, the thermal transfer of liquidwater was entirely neglected.

6.0 CONCLUSIONS

The rise of water from a shallow water table can, in some cases, serve the useful purpose of supplying water to the root zone of crops. On the other hand, this process also entails the hazard of salinization, especially where the ground water is brackish and potential evaporativity is high. Excessive irrigation tends to raise the water table and thus aggravate the salinization problem. Lowering the water table by drainage can decisively reduce the rate of capillary rise and evaporation. Drainage is a costly operation, however, and it is therefore necessary, ahead of time, to determine the optimal depth to which the water table should be lowered. It requires the estimation of evaporation rates from bare soils with high water table conditions, specifically through multilayer profiles commonly found in nature.

A numerical model study has been carried out to estimate the steady state evaporation rates from shallow water table through a layered soil profile under isothermal conditions. An implicit finite-differencing technique is used for a mathematical model of one-dimensional, vertical, unsteady, unsaturated flow above a water table using the non-linear Richards equation.

The evaporation rates are shown to be related to the sequence and thickness of soil layers, their hydraulic properties and water table depths. It was found that soil layering reduces evaporation only marginally when a thin layer of coarse-textured soil overlies a fine-textured soil, as compared to a homogeneous profile. However, evaporation increases for thicker top layers of coarse-textured soil. The soil layering also increases the

evaporation in case of fine-textured soil overlying a coarse-textured soil. The effect of layering was found to be more pronounced for shallow ground water depths. The possible existence of an interlayer contact zone impedance to water flow was not considered in the study.

The dependence of the actual steady state evaporation rate on water table depth and soil layerings, might be very useful in hydrologic practice. The extent, to which the above results can be applied quantitatively to the field, depends upon the correspondence between the input values of soil moisture characteristics for each layer and those existing in the field. The soil data employed might be less precise than desirable. In addition, it might not be possible to adequately take into account the variability of field soils.

REFERENCES

- 1. Anat, A., H. R. Duke, and A. T. Corey (1965), "Steady Upward Flow from Water Tables", Colorado State University Hydrol. Paper No. 7.
- 2. Douglas, J. J., and B. F. Jones (1963), "On Predictor-Corrector Method for Non Linear Parabolic Differential Equations", J. Siam, Volume 11, pp. 195-204.
- Edlefson, N. E., and A. B. C. Anderson (1943), "Thermodynamics of Soil Moisture", Hilgardia, Volume 15, pp. 31-298.
- 4. Gardner, W. R. (1958), "Some Steady-State Solutions of the Unsaturated Moisture Flow Equation with Application to Evaporation from a Water Table", Soil Science, Volume 85, pp. 228-232.
- 5. Gardner, W. R., and Milton Fireman (1958), "Laboratory Studies of Evaporation from Soil Columns in the Presence of a Water Table", Soil Science, Volume 85, pp. 244-249.
- Hadas, Amos, and Daniel Hillel (1972), "Steady-State Evaporation through Non-Homogeneous Soils from a Shallow Water Table", Soil Science, Volume 113, pp. 65-73.
- Haverkamp, R., M. Vauclin, J. Touma, P. J. Wierenga, and G. Vachaud (1977), "A Comparison of Numerical Simulation Models for One-Dimensional Infiltration", Soil Sci. Soc. Am. J., Volume 41, pp. 285-294.
- 8. Haverkamp, R., and M. Vauclin (1979), "A Note on Estimating Finite Difference Interbloc Hydraulic Conductivity Values for Transient Unsaturated Flow Problems", Water Resources Research, Volume 15, No. 1, February 1979, pp. 181-187.
- 9. Hillel, Daniel (1980), "Applications of Soil Physics", Academic Press, New York.
- 10. Kumar, C. P. and G. C. Mishra (1991), "Development of a Soil Moisture Prediction Model", Technical Report No. TR-104, National Institute of Hydrology, Roorkee, 1990-91, 52 pp.

- 11. Moore, R. E. (1939), "Water Conduction from Shallow Water Tables", Hilgardia, Volume 12, pp. 383-426.
- 12. Philip, J. R. (1957), "The Theory of Infiltration", Soil Sci., Volume 83, pp. 345-357.
- 13. Philip, J. R. (1969), "Theory of Infiltration", Advances in Hydroscience, Volume 5, pp. 215-305, Academic Press, New York.
- 14. Remson, I., G. M. Hornberger, and F. J. Molz (1971), "Numerical Methods in Subsurface Hydrology", Wiley Intersci., New York, 389 p.
- 15. Ripple, C. D., Jacob Rubin, and T. E. A. van Hylckama (1972), "Estimating Steady-State Evaporation Rates from Bare Soils under Conditions of High Water Table", U.S. Geological Survey Water-Supply Paper 2019-A.
- Willis, W. O. (1960), "Evaporation from Layered Soils in the Presence of a Water Table", Soil Sci. Soc. Am. Proc., Volume 24, pp. 239-242.

LAYERC. FOR

EVAPORATION FROM LAYERED SOILS C C IN THE PRESENCE OF A WATER TABLE C С LAYERED PROFILES OF YOLO LIGHT CLAY OVER SAND С IMPLICIT SCHEME WITH IMPLICIT LINEARIZATION C C (MODEL 4 OF HAVERKAMP ET AL., 1977) C DIMENSION SUB(100), SUP(100), DIAG(100), B(100) DIMENSION H(100, 2), CCC(100, 2)DIMENSION THETA(100,2), HYDCON(100,2) DIMENSION HP(100, 2), THETAP(100, 2) OPEN(UNIT=1,FILE='LAYERC.DAT',STATUS='OLD') OPEN(UNIT=2,FILE='LAYERC.OUT',STATUS='NEW') C C I REFERS TO DEPTH C J REFERS TO TIME C Z = DEPTH (CM), ORIENTED POSITIVELY DOWNWARD C THETA = VOLUMETRIC MOISTURE CONTENT (CUBIC CM / CUBIC CM) C H = SOIL WATER PRESSURE (RELATIVE TO THE ATMOSPHERE) C EXPRESSED IN CM OF WATER C R = UNIVERSAL GAS CONSTANT (ERGS/MOLE/K)C T = ABSOLUTE TEMPERATURE (K)C (READ IN CENTIGRADE AND CONVERTED IN K) C WM = MOLECULAR WEIGHT OF WATER (GM/MOLE) C G = ACCELERATION DUE TO GRAVITY (CM/SEC/SEC)C RH = RELATIVE HUMIDITY OF THE AIR (FRACTION) C THETAR, CTHETAR = RESIDUAL MOISTURE CONTENTS C FOR THE TWO SOILS C THETAS, CTHETAS = MOISTURE CONTENTS AT SATURATION C FOR THE TWO SOILS C BETA1, CONA, CBETA1, CCONA = PARAMETERS IN THE HYDRAULIC C CONDUCTIVITY AND SOIL WATER PRESSURE С RELATIONSHIPS FOR THE TWO SOILS С BETA2, ALPHA, CBETA2, CALPHA = PARAMETERS IN THE MOISTURE С CONTENT AND SOIL WATER PRESSURE RELATIONSHIPS FOR THE TWO SOILS C С HYDCON = HYDRAULIC CONDUCTIVITY OF THE SOIL (CM/HOUR) С AKS, CAKS = HYDRAULIC CONDUCTIVITIES AT SATURATION (CM/HOUR) С FOR THE TWO SOILS C DELT = TIME STEP (HOURS) DELZ = DEPTH INTERVAL (CM) C С NTIME = NUMBER OF TIME STEPS С NNODE = NUMBER OF NODES С = SPECIFIC WATER CAPACITY (/CM) DEFINED AS d(theta)/dh CCC С DEPTH = WATER TABLE DEPTH С = THICKNESS OF TOP LAYER DT C

		READ(1,11)THETAR, THETAS, CTHETAR, CTHETAS
11		FORMAT(4F12.3)
		READ(1,12)BETA1,BETA2,CBETA1,CBETA2
12		FORMAT(4F12.3)
		READ(1,13)CONA, ALPHA, CCONA, CALPHA
13		FORMAT(4F12.3)
~ ~		READ(1, 14)AKS, CAKS
14		FORMAT(2F12, 5)
14		DEAD(1, 15) DELT DELT
15		EODMAT (E12 0 E12 2)
15	¥8	PEAD(1, 16) NUTVE NNODE
10		READ(1,10)NTIME, NNODE
10		FORMAT(17,5X,15)
		$\operatorname{READ}(1, 17) \mathrm{T}$
17		FORMAT(F5.2)
		READ(1,18)RH
18		FORMAT(F5.2)
		READ(1,19)DT
19		FORMAT(F5.2)
С		
		TNODE = $(DT+0.5*DELZ)/DELZ$
		NODET = INT(TNODE)
С		
C		READING OF INITIAL CONDITIONS
c		READING OF INITIAL CONDITIONS
U		PEAD(1, 20)/H/T, 1) T-1 NNODE)
20		EODMAT(5E12, C)
20		FORMAT(SF12.6)
C		
		IF(NODET.EQ.0) GO TO 102
		DO 101 I=1,NODET
		THETA(I,1)=CALPHA*(CTHETAS-CTHETAR)/(CALPHA
	1	+ALOG(ABS(H($I, 1$)))**CBETA2)+CTHETAR
		IF(H(I,1).GE.(-1.0))THETA(I,1)=CTHETAS
101		CONTINUE
102		DO 103 I=NODET+1, NNODE
		THETA($I, 1$)=ALPHA*(THETAS-THETAR)/(ALPHA+ABS(H($I, 1$))
	1	**BETA2)+THETAR
103		CONTINUE
C		CONTINUE
U		WDITE(2 21)
01		TELES (2,21)
21		FORMAT(/2X, 'EVAPORATION FROM LAYERED SUILS')
~~		WRITE(2,22)
22		FORMAT(2X, 'IN THE PRESENCE OF A WATER TABLE')
		WRITE(2,23)
23		FORMAT(/2X, 'YOLO LIGHT CLAY OVERLYING SAND')
		WRITE(2,24)
24		FORMAT(/2X, 'ONE DIMENSIONAL RICHARDS EQUATION')
		WRITE(2,25)
25		FORMAT(2X, 'IMPLICIT SCHEME WITH IMPLICIT LINEARIZATION')
		DEPTH=(NNODE-1)*DEL7
		WRITE($2, 26$)
26		
20		PURMAT(72A, WATER TABLE DEPTH)
07		WRITE(2,27)DEPTH
27		FORMAT(2X, F7.3)
		WRITE(2,28)
28		FORMAT(/2X,'THICKNESS OF TOP LAYER')

	WRITE(2,29)DT
29	FORMAT(2X, F7, 3)
	WRITE(2,30)
30	FORMAT(/2X 'TEMPERATURE IN CENTIGRADE')
50	FORMAT(72X, TEMPERATORE IN CENTIONADE)
	WPITF(2 31)T
31	FOPMAT(F7, 2)
01	WDITE(2 32)
32	FORMAT(2) PREATIVE HUMIDITY OF THE ALD')
02	WRITE(2 33)RH
22	FORMAT(F7, 3)
00	WpiTF(2, 3A)
34	FORMAT(/2X) 'THETAR' QX 'THETAS' QX 'CTHETAR' QX 'CTHETAS')
01	WRITE(2 35)THETAR THETAS CTHETAR CTHETAS
35	FOPMAT(2) = 5 - 3 - 100 = 5 - 3 - 100 = 5 - 3 - 100 = 5 - 3)
00	WDITE(2 26)
26	$\frac{1}{10} \frac{1}{10} \frac$
30	FORMAT(2A, DETAI , IUA, DETA2 , IUA, ODETAI , 9A, ODETA2)
97	M(L(C,S)) D(L(A), D(D(A), D(D(A), D(D(A), D(A)))) = D(A)
31	$FORMAI(2\lambda, F3.3, 10\lambda, F3.3, 10\lambda, F3.3, 10\lambda, F3.3)$
0.0	WRITE(2,38)
38	FORMAT(2X, 'CONA', IIX, 'ALPHA', IUX, 'CCONA', IUX, 'CALPHA')
20	WRITE(2,39)CONA, ALPHA, CCONA, CALPHA
39	FORMAT(2X,F11.3,4X,F11.3,1X,F10.3,5X,F10.3)
10	WRITE(2,40)
40	FORMAT(2X, 'AKS', 12X, 'CAKS')
	WRITE(2,41)AKS,CAKS
41	FORMAT(2X, F8.5, 7X, F8.5)
10	WRITE(2,42)
42	FORMAT(ZX, 'DELT', IIX, 'DELZ')
10	WRITE(2,43)DELI,DELZ
43	FORMAT(2X, F1U.8, 5X, F6.3)
	WRITE(2,44)
44	FORMAT(2X, 'NTIME', 10X, 'NNODE')
	WRITE(2,45)NTIME, NNODE
45	FORMAT(17,10X,15)
	WRITE(2,46)
46	FORMAT(/2X, 'SOIL MOISTURE AND SOIL WATER PRESSURE PROFILES')
	WRITE(2,47)
47	FORMAT(/2X, 'INITIAL CONDITIONS'/)
	WRITE(2,48)(THETA(I,1),I=1,NNODE)
48	FORMAT(5F12.6)
	WRITE(2,*)
2425	WRITE(2, 49)(H(I, 1), I=1, NNODE)
49	FORMAT(5F12.6)
C	
С	GENERATION OF UPPER BOUNDARY CONDITION
C	
	R = 8.314E+7
	WM = 18.0
	G = 980.665
	TMP=T+273.15
	HU=R*TMP*ALOG(RH)/(WM*G)
	HU=HU/1019.80
	H(1,1)=HU
	H(1,2)=HU

```
HP(1,1) = HU
        HP(1,2) = HU
        IF(NODET.EQ.0) GO TO 201
        THETA(1,1)=CALPHA*(CTHETAS-CTHETAR)/(CALPHA+
                    ALOG(ABS(H(1,1)))**CBETA2)+CTHETAR
     1
        IF(H(1,1).GE.(-1.0))THETA(1,1)=CTHETAS
        GO TO 202
        THETA(1,1)=ALPHA*(THETAS-THETAR)/(ALPHA+
201
                    ABS(H(1,1))**BETA2)+THETAR
     1
202
        THETA(1,2) = THETA(1,1)
        THETAP(1, 1) = THETA(1, 1)
        THETAP(1,2)=THETA(1,1)
C
        GENERATION OF LOWER BOUNDARY CONDITION
C
C
        THETA (NNODE, 2) = THETA (NNODE, 1)
        THETAP(NNODE, 1) = THETA(NNODE, 1)
        THETAP(NNODE, 2) = THETA(NNODE, 1)
        H(NNODE, 2) = H(NNODE, 1)
        HP(NNODE, 1) = H(NNODE, 1)
        HP(NNODE, 2) = H(NNODE, 1)
C
        SIMULATION OF SOIL MOISTURE PROFILES
C
С
        E1=BETA1/BETA2
        E2=(THETAS-THETAR)
        E3=ALPHA**E1
        E4=CONA*AKS
        E5=1./BETA2*ALPHA**(1./BETA2)
        CE1=CBETA1/CBETA2
        CE2=(CTHETAS-CTHETAR)
        CE3=CALPHA**CE1
        CE4=CCONA*CAKS
        CE5=1./CBETA2*CALPHA**(1./CBETA2)
С
        DO 800 J=2,NTIME
        write(*,*)j
С
        IF(NODET.EQ.0) GO TO 302
        DO 301 I=1, NODET
        HYDCON(I,1)=CE4/(CCONA+(ABS(H(I,1)))**CBETA1)
        CCC(I,1)=EXP(-(CALPHA*(CTHETAS-THETA(I,1))/(THETA(I,1)))
                  -CTHETAR))**(1/CBETA2))*1./(CE5*CE2)*(CTHETAS
     1
     2
                  -THETA(I,1))**(-1./CBETA2+1.)*(THETA(I,1))
     3
                  -CTHETAR)**(1./CBETA2+1.)
301
        CONTINUE
302
        DO 303 I=NODET+1, NNODE
        HYDCON(I,1) = E4/(CONA+(ABS(H(I,1))) **BETA1)
         CCC(I,1)=1./(E5*E2)*(THETAS-THETA(I,1))**(-1./BETA2+1.)*
     1
                  (THETA(I,1) - THETAR) * * (1. / BETA2+1.)
303
        CONTINUE
C
        DO 903 I=2, NNODE-1
        DIAG(I-1)=2.*CCC(I,1)/HYDCON(I,1)+2.*DELT/DELZ**2
        SUB(I-1)=-DELT/DELZ**2
```

		SUP(I-1) = -DELT/DELZ * 2
		IF(I.EQ.NODET)GO TO 901
		IF(I.EQ.NODET+1)GO TO 902
		B(I-1)=2.*CCC(I,1)/HYDCON(I,1)*H(I,1)+DELT/DELZ*,5
	1	*(HYDCON(I+1,1)-HYDCON(I-1,1))/HYDCON(I,1)
	2	*((H(I+1,1)-H(I-1,1))/(2.*DELZ)-1.)
		GO TO 903
901		B(I-1)=2.*CCC(I,1)/HYDCON(I,1)*H(I,1)+DELT/DELZ
	1	*(HYDCON(I,1)-HYDCON(I-1,1))/HYDCON(I,1)
	2	*((H(I+1,1)-H(I-1,1))/(2.*DELZ)-1.)
		GO TO 903
902		B(I-1)=2.*CCC(I,1)/HYDCON(I,1)*H(I,1)+DELT/DELZ
	1	*(HYDCON(I+1,1)-HYDCON(I,1))/HYDCON(I,1)
	2	*((H(I+1,1)-H(I-1,1))/(2.*DELZ)-1.)
903		CONTINUE
C		
		B(1)=B(1)-SUB(1)*H(1,2)
		B(NNODE-2) = B(NNODE-2) - SUP(NNODE-2) * H(NNODE-2)
		DO 1000 $I=1$.NNODE-3
1000		SUB(I) = SUB(I+1)
		M=NNODE-2
		CALL TRID(M.SUP.SUB.DIAG.B)
		DO 1100 I=1.NNODE-2
1100		HP(I+1,2)=B(I)
C		
-		LE(NODET.LT.2) GO TO 403
		DO = 401 I = 2. NODET
		THETAP $(I, 2) = CALPHA*(CTHETAS - CTHETAR)/(CALPHA)$
	1	$+\Delta LOG(\Delta BS(HP(1,2))) **CBETA2) +CTHETAP$
	-	IF(HP(1,2), GF, (-1,0))THETAP(1,2)=CTHETAS
401		CONTINUE
		DO 402 I = NODFT+1 NNODF-1
		THETAD($[2,2)$) = AI DHA*(THETAS_THETAD)/(AI DHA+ADS(HD($[2,2)$))
	1	$\frac{1101}{1000} + \frac{1101}{1000} + \frac{11000}{1000} + 1100$
402	-	CONTINUE
102		GO TO 405
403		DO 404 I=2 NNODE-1
100		$THETAD(1, 2) - AIDUA \times (THETAG_THETAD) / (AIDUA + ADG(UD(1, 2)))$
	1	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
404		CONTINUE
C		CONTINUE
405		IE(NODET EQ. 0) CO TO 502
100		DO = 501 I - 1 NODET
		$\frac{1}{1} = \frac{1}{1} = \frac{1}$
		$\frac{CCC(I-1) - CE4}{COUNT(ABS(nr(1,2)) + CDE1AI)}$
	1	CUC(1,1)-EXP(-(CALPRA+(CIRETAD-THETAP(1,2))/(THETAP(1,2)))
	2	-OIDEIAR)/**(I/OBEIAZ)/*I./(OED*OEZ)*(OIHEIAS)
100	3	-IDEIAF(1,2) + (-1,-) + (-1,
501	0	$= 0.1 \Pi \mathbb{D} [A \Pi] = 1. / U \mathbb{D} \mathbb{D} [A \mathbb{Z} + 1.]$
502		DO 502 I-NODETLI NNODE
502		$\frac{1}{10000} = \frac{1}{10000000000000000000000000000000000$
		$\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} + 1$
	1	$(UUU(1,1)=1./(UD^*UZ)^*(THETAS-THETAP(1,Z))^**(-1./BETAZ+1.)*$
500	T	$(\text{IHETAP}(1, 2) - \text{IHETAK}) \neq (1./\text{BETA2}+1.)$
003		CONTINUE
U		

		DO 1203 I=2, NNODE-1
		DIAG(I-1) = CCC(I, 1) / HYDCON(I, 1) + DELT / DELZ * 2
		SUB(I-1) = -DELT/DELZ * 2*.5
		SUP(I-1) = -DELT/DELZ * 2*.5
		IF(I.EQ.NODET)GO TO 1201
		IF(I, EQ, NODET+1)GO TO 1202
		B(I-1) = CCC(I, 1) / HYDCON(I, 1) * H(I, 1) + DELT / DELZ*, 5
	1	*(HVDCON(I+1, 1)-HVDCON(I-1, 1))/HYDCON(I, 1)
	2	$*((\mu D(1+1,2)-\mu D(1-1,2))/(2 *DFL7)-1.)$
	4	$\pi((\Pi F(I+1,2)-\Pi F(I-1,2)))$
	3	+DEDI/DEDZ + 24.5*(n(1+1,1)-2.*n(1,1))n(1-1,1))
1001		GU = 10 = 1203
1201		B(1-1) = CCC(1,1) / HYDCON(1,1) + H(1,1) + DEL1 / DEL2
	1	*(HYDCON(1,1)-HYDCON(1-1,1))/HYDCON(1,1)
	2	*((HP(1+1,2)-HP(1-1,2))/(2.*DELZ)-1.)
	3	+DELT/DEL2**2*.5*(H(1+1,1)-2.*H(1,1)+H(1-1,1))
		GO TO 1203
1202		B(I-1)=CCC(I,1)/HYDCON(I,1)*H(I,1)+DELT/DELZ
	1	*(HYDCON(I+1,1)-HYDCON(I,1))/HYDCON(I,1)
	2	*((HP(I+1,2)-HP(I-1,2))/(2.*DELZ)-1.)
	3	+DELT/DELZ**2*.5*(H(I+1,1)-2.*H(I,1)+H(I-1,1))
1203		CONTINUE
С		
		B(1)=B(1)-SUB(1)*H(1,2)
		B(NNODE-2)=B(NNODE-2)-SUP(NNODE-2)*H(NNODE,2)
		DO 1300 I=1, NNODE-3
1300		SUB(I) = SUB(I+1)
		M=NNODE-2
		CALL TRID(M.SUP,SUB,DIAG,B)
		DO 1400 $I = 1$, NNODE - 2
1400		H(I+1,2)=B(I)
C		
		IF(NODET, LT, 2) GO TO 603
		DO $601 \text{ L}=2.\text{ NODET}$
		THETA($I, 2$)=CALPHA*(CTHETAS-CTHETAR)/(CALPHA
	1	+ALOG(ABS(H(1,2)))**CBETA2)+CTHETAR
		$IF(H(I, 2), GE_{(-1, 0)})$ THETA $(I, 2)$ =CTHETAS
601		CONTINUE
001		DO 602 $I = NODET + 1$ NNODE - 1
		TUETA(I, 2) = AIDHA*(THETAS=THETAR)/(ALPHA+ABS(H(I, 2)))
	1	11EIA(1,2)-ADENA*(INEIAO INEIAO)/(ADENA 100(1(1)0)) **DETA2)+TUETAD
602	T	
002		
c00		GU = 10 = 0.000
603		DU = 0.04 = 2, NNODE-1
		THETA(1, Z) = ALPHA+(IHEIAS-IHEIAK)/(ALPHA+ADS($n(1, 2)$)
	1	**BETAZ)+THETAR
604		CONTINUE
С		
605		IF (J.EQ.2161) GO TO 111
		IF (J.EQ.4321) GO TO 111
		IF (J.EQ.6481) GO TO 111
		IF (J.EQ.8641) GO TO 111
		IF (J.EQ.10801) GO TO 111
		IF (J.EQ.12961) GO TO 111
		IF (J.EQ.15121) GO TO 111
		IF (J.EQ.17281) GO TO 111

	IF (J.EQ.19441) GO TO 111	
	IF (J.EQ.21601) GO TO 111	
	IF (J.EQ.23761) GO TO 111	
	IF (J.EQ.25921) GO TO 111	
	IF (J.EQ.28081) GO TO 111	
	IF (J.EQ.30241) GO TO 111	
	IF(J, EQ, 32401) GO TO 111	
	IF (J, FQ, 34561) = GO TO 111	
	IF (I FO 36721) CO TO 111	
	IF (J, EQ, 50/21) = 00.10111	
	IF (J,EQ,00001) GO IO III III IF (J,EQ,10011) GO TO 111	
	IF (J.EQ.41041) GO TO 111	
	IF (J.EQ.43201) GO TO 111	
	IF (J.EQ.45361) GO TO 111	
	IF (J.EQ.47521) GO TO 111	
	IF (J.EQ.49681) GO TO 111	
	IF (J.EQ.51841) GO. TO 111	
	IF (J.EQ.54001) GO TO 111	
1	IF (J.EQ.56161) GO TO 111	
	IF (J.EQ.58321) GO TO 111	
	IE (J.EQ.60481) GO TO 111	
	IF (J.EQ. 62641) GO TO 111	
	IF(J,FQ,64801) GO TO 111	
	IF (I, FQ, 66961) = GO TO (111)	
	IE (I EQ. 60001) GO TO 111	
	IF (J EQ.05121) GO FO 111	
	IF (J, EQ, 72441) GO TO IFI	
	IF (J.EQ.75441) GO IO III III IF (J.EQ.75001) GO ID III	
	IF (J.EQ. (3501)) GO TO III III IF (J.EQ. (3501)) GO TO III	
	IF (J.EQ.777.61) GO TO 111	
	IF (J.EQ.79921) GO TO 111	
	IF (J.EQ.82081) GO TO 111	
	IF (J.EQ.84241) GO TO 111	
	IF (J.EQ.86401) GO TO 111	
	IF (J.EQ.88561) GO TO 111	
	IF (J.EQ.90721) GO TO 111	
	IF (J.EQ.92881) GO TO 111	
	IF (J.EQ.95041) GO TO 111	
	IF (J.EQ. 97201) GO TO 111	
	IF (J.FQ. 99361) GO TO 111	
	IF (J, FQ, 101521) GO TO 111	
	IF (J EQ 103691) CO TO 111	
	IF (J, EQ, 105001) GO TO 111 IF (J FO 105941) CO TO 111	
	$IF (J, EQ, 103041) GO IO III \\IE (J, EQ, 100001) GO TO 111$	
	IF (J.EQ.108001) GO TO III	
	1F (J.EQ.110161) GO TO 111	
	IF (J.EQ.112321) GO TO 111	
	GO TO 333	
	CONTINUE	
	ESTIMATION OF EVAPORATION RATES	
	IF(NODET.EQ.0) GO TO 702	
	DO 701 $I=1$, NODET	
	HYDCON(1,2) = CE4/(CCONA+(ABS(U(1,2))) + CEETA1)	1
	CONTINUE	,
	DO 702 I = NODET (1 NNODE	
	UVDCON(I 0)-D4((CONA, (ADC(U(T 0)))))	3
	HYDCON(1,2) = E4/(CONA+(ABS(H(1,2))) **BETA1)	

111 C C C

703	CONTINUE
C	
	EVAP = 0.0
	DO 222 N = 2, NNODE
	EVAP=EVAP+((HYDCON(N,2)*HYDCON(N-1,2))**0.5)*
1	(((H(N,2)-H(N-1,2))/DELZ)-1.0)*240.0
222	CONTINUE
	EVAP = EVAP/(NNODE-1)
	IF(EVAP, GT, 6, 0)EVAP=6.0
С	
U	ITIME-1-1
	FORMAT(2x, 3T, 111ME, ROOR = ', 17, 6x, 'DURATION = ', F10.4, 1X, 'HOURS'/)
51	FORMAL($/2\Lambda$, TIME SIEF = ,17,0 Λ ; DOMITION ,,
	WRITE(2, 52)(THETA(1, 2), 1-1, NODE)
52	FORMAT(5F12.6)
	WRITE(2, $*$)
	WRITE(2,53)(H(1,2), I=1, NNODE)
53	FORMAT (5F12.6)
	WRITE(2,54)EVAP
54	FORMAT($/2x$, 'EVAPORATION LOSSES = ', F12.6, MM/DAT //
333	CONTINUE
С	
	DO 1500 I = 2, NNODE-1
	THETA(I,1) = THETA(I,2)
	H(1,1) = H(1,2)
1500	CONTINUE
C	
800	CONTINUE
000	STOP
	FND
C	END
C	CURROUTINE TRID (M SUR SUR DIAG B)
	SUBROUTINE INTERMENTS SUBJECT (100) B(100) B(100)
	DIMENSION SUP(100), SUB(100), DIAG(100), $B(100)$
	N=M
	NN=N-1
	SUP(1)=SUP(1)/DIAG(1)
	B(1) = B(1) / DIAG(1)
	DO 61 $I=2, N$
	II=I-1
	DIAG(I)=DIAG(I)-SUP(II)*SUB(II)
	IF (I.EQ.N) GO TO 61
	SUP(I) = SUP(I) / DIAG(I)
61	B(I) = (B(I) - SUB(II) * B(II)) / DIAG(I)
1.000	DO 62 $K=1$, NN
	I=N-K
62	B(I)=B(I)-SUP(I)*B(I+1)
04	RETURN
	END

LAYERS. FOR

EVAPORATION FROM LAYERED SOILS C С IN THE PRESENCE OF A WATER TABLE C С LAYERED PROFILES OF SAND OVER YOLO LIGHT CLAY С C IMPLICIT SCHEME WITH IMPLICIT LINEARIZATION С (MODEL 4 OF HAVERKAMP ET AL., 1977) С DIMENSION SUB(100), SUP(100), DIAG(100), B(100) DIMENSION H(100,2),CCC(100,2) DIMENSION THETA(100,2), HYDCON(100,2) DIMENSION HP(100,2), THETAP(100,2) OPEN(UNIT=1,FILE='LAYERS.DAT',STATUS='OLD') OPEN(UNIT=2, FILE='LAYERS.OUT', STATUS='NEW') С C I REFERS TO DEPTH С J REFERS TO TIME С Z = DEPTH (CM), ORIENTED POSITIVELY DOWNWARD С THETA = VOLUMETRIC MOISTURE CONTENT (CUBIC CM / CUBIC CM) С H = SOIL WATER PRESSURE (RELATIVE TO THE ATMOSPHERE) EXPRESSED IN CM OF WATER R = UNIVERSAL GAS CONSTANT (ERGS/MOLE/K) T = ABSOLUTE TEMPERATURE (K)(READ IN CENTIGRADE AND CONVERTED IN K) WM = MOLECULAR WEIGHT OF WATER (GM/MOLE) G = ACCELERATION DUE TO GRAVITY (CM/SEC/SEC) RH = RELATIVE HUMIDITY OF THE AIR (FRACTION) THETAR, CTHETAR = RESIDUAL MOISTURE CONTENTS FOR THE TWO SOILS THETAS, CTHETAS = MOISTURE CONTENTS AT SATURATION FOR THE TWO SOILS BETA1, CONA, CBETA1, CCONA = PARAMETERS IN THE HYDRAULIC CONDUCTIVITY AND SOIL WATER PRESSURE RELATIONSHIPS FOR THE TWO SOILS BETA2, ALPHA, CBETA2, CALPHA = PARAMETERS IN THE MOISTURE CONTENT AND SOIL WATER PRESSURE RELATIONSHIPS FOR THE TWO SOILS HYDCON = HYDRAULIC CONDUCTIVITY OF THE SOIL (CM/HOUR) AKS, CAKS = HYDRAULIC CONDUCTIVITIES AT SATURATION (CM/HOUR) FOR THE TWO SOILS DELT = TIME STEP (HOURS) DELZ = DEPTH INTERVAL (CM) NTIME = NUMBER OF TIME STEPS NNODE = NUMBER OF NODES CCC = SPECIFIC WATER CAPACITY (/CM) DEFINED AS d(theta)/dh DEPTH = WATER TABLE DEPTH DT = THICKNESS OF TOP LAYER

С

С

C

C

C

C

C

С

С

С

C

С

С

С

С

С

С

С

C

С

С

С С

С

C

С

С

С

		READ(1,11)THETAR, THETAS, CTHETAR, CTHETAS
11		FORMAT(4F12.3)
		READ(1,12)BETA1, BETA2, CBETA1, CBETA2
12		FORMAT(4F12.3)
10		READ(1,13)CONA, ALPHA, CCONA, CALPHA
13		FORMAT(4F12,3)
10		PFAD(1, 14)AKS CAKS
14		EODMAT(2E12, 5)
14		PEAD(1, 15) DELT DELT
15		EAD(1, 15) / EDI, DEDC
15		FURMAI(F12.0,F12.0)
10		READ(1,10)NIIME, NNODE
10		FORMAT(1 1%, 5X, 15)
		READ(1,17)T
17		FORMAT(F5.2)
		READ(1, 18)RH
18		FORMAT(F5.2)
		READ(1, 19)DT
19		FORMAT(F5.2)
С		
		TNODE = (DT+0.5*DELZ)/DELZ
		NODET = INT(TNODE)
С		
С		READING OF INITIAL CONDITIONS
С		
		READ(1, 20)(H(1, 1), I=1, NNODE)
20		FORMAT(5F12,6)
C		
Ū		IF(NODET, EQ, 0) GO TO 102
		DO 101 $I=1$. NODET
	3	THETA($I, 1$)=ALPHA*(THETAS-THETAR)/(ALPHA+ABS(H($I, 1$))
	1	
101	Ŧ	
101		DO 102 L-NODETLI NNODE 1
102		103 I=NODEI+I, NNODE-I
		THETA(1,1)=CALPHA*(CTHETAS-CTHETAR)/(CALPHA
	1	+ALOG(ABS(H(1,1))) **CBETA2)+CTHETAR
		IF(H(I,1).GE.(-1.0))THETA(I,1)=CTHETAS
103		CONTINUE
		THETA(NNODE, 1)=CTHETAS
С		
		WRITE(2,21)
21		FORMAT(/2X, 'EVAPORATION FROM LAYERED SOILS')
		WRITE(2,22)
22		FORMAT(2X,'IN THE PRESENCE OF A WATER TABLE')
		WRITE(2,23)
23		FORMAT(/2X, 'SAND OVERLYING YOLO LIGHT CLAY')
20		WRITE(2, 24)
24		FORMAT (/2X 'ONE DIMENSIONAL RICHARDS FOUNTION')
44		WDITE(2 25)
0.5		TRIIE(2,20)
20		PEDRUAL(2A, IMPLICIT DOLLME WITH IMPLICIT DINEARIZATION)
		DEPTH=(NNODE-I)*DELZ
		WRITE(2,26)
26		FORMAT(/2X,'WATER TABLE DEPTH')
		WRITE(2,27)DEPTH
27		FORMAT(2X, F7, 3)

	WRITE(2,28)
28	FORMAT(/2X,'THICKNESS OF TOP LAYER')
	WRITE(2,29)DT
29	FORMAT(2X, F7, 3)
	WRITE(2,30)
30	FORMAT(/2X, 'TEMPERATURE IN CENTIGRADE')
	WRITE(2.31)T
31	FORMAT(F7.2)
	WRITE(2.32)
32	FORMAT(2X, 'RELATIVE HUMIDITY OF THE AIR')
	WRITE(2.33)RH
33	F(RMAT(F7.3))
	WRITE(2.34)
34	FORMAT(/2X, 'THETAR', 9X, 'THETAS' 9X 'CTHETAR' 8X 'CTHETAS')
••	WRITE(2.35)THETAR THETAS CTHETAR CTHETAR , δx , CIRETAS)
35	FORMAT(23, F5, 3, 103, F5, 3, 103, F5, 3, 103, F5, 3)
00	WRITE(2.36)
36	FORMAT(2X 'RETA1' 10X 'RETA2' 10Y 'OPETA1' 0X 'OPETA2')
00	WRITE(2, 37) BETA1 BETA2 CRETA1 CRETA2
37	FORMAT(2X F5 3 10Y F5 3 10Y F5 3 10Y F5 3)
01	WRITE(2,38)
38	FORMAT(2x, 'CONA' 11x 'ALDHA' 10x 'CCONA' 10x 'CALDHA')
00	WRITE(2,39)CONA ALPHA CCONA CALPHA
39	FORMAT(2X, F11, 3, 4Y, F11, 3, 1Y, F10, 3, 5Y, F10, 2)
00	WRITE(2, 40)
40	FORMAT($2x$, 'AKS', $12x$, 'CAKS')
10	WRITE(2, 41) AKS CAKS
41	FORMAT(2X F8 5 7X F9 5)
	WRITE(2, 42)
42	FORMAT(2X, 'DELT', 11X 'DELZ')
	WRITE(2 43) DELT DELZ γ
43	FORMAT(2X, F10, 8, 5X, F6, 3)
10	WRITE(2 AA)
11	EOPMAT(2Y) = 10Y + MODE()
44	WDITE(2 A5)NTIME NNODE
45	FORMAT(17, 10Y, 15)
40	WRITE(2, 46)
46	FORMAT(/2Y 'SOLL MOISTURE AND SOLL WATER DRESSURE PROFILES!)
40	WRITE(2 A7)
47	FORMAT(/2Y) INITIAL CONDITIONS?()
-11	WRITE(2 AR) (TUETA(1 1) I = 1 NNODE)
48	FORMAT(5F12, 6)
10	$WDITE(2 \pm)$
	$WDITE(2, \pi)$ WDITE(2, 40)(U(1, 1), 1-1, NNODE)
10	FODMAT(5F12, G)
45	FORMAT(SF12.0)
c	CENERATION OF HERED POUNDARY CONDUCTOR
C	GENERATION OF UPPER BOUNDARY CONDITION
C	$D = 0.214 E_{17}$
	$\pi = 0.014 \text{ET}/$
	$m_1 = 10.0$
	G = 380.000
	TMF=T+Z/3.15
	HU = K + TMP + ALOG(KH) / (WM + G)
	HU=HU/1019.80
	H(1,1)=HU

```
H(1,2)=HU
        HP(1,1) = HU
        HP(1,2)=HU
        IF(NODET.EQ.0) GO TO 201
        THETA(1,1)=ALPHA*(THETAS-THETAR)/(ALPHA+
     1
                    ABS(H(1,1))**BETA2)+THETAR
        GO TO 202
        THETA(1,1)=CALPHA*(CTHETAS-CTHETAR)/(CALPHA+
201
                    ALOG(ABS(H(1,1)))**CBETA2)+CTHETAR
     1
        IF(H(1,1).GE.(-1.0))THETA(1,1)=CTHETAS
202
        THETA(1,2) = THETA(1,1)
        THETAP(1,1)=THETA(1,1)
        THETAP(1,2)=THETA(1,1)
C
C
        GENERATION OF LOWER BOUNDARY CONDITION
C
        THETA (NNODE, 2) = THETA (NNODE, 1)
        THETAP(NNODE, 1) = THETA(NNODE, 1)
        THETAP(NNODE, 2)=THETA(NNODE, 1)
        H(NNODE, 2) = H(NNODE, 1)
        HP(NNODE, 1) = H(NNODE, 1)
        HP(NNODE, 2) = H(NNODE, 1)
С
С
        SIMULATION OF SOIL MOISTURE PROFILES
C
        E1=BETA1/BETA2
        E2=(THETAS-THETAR)
        E3=ALPHA**E1
        E4=CONA*AKS
        E5=1./BETA2*ALPHA**(1./BETA2)
        CE1=CBETA1/CBETA2
        CE2=(CTHETAS-CTHETAR)
        CE3=CALPHA**CE1
        CE4=CCONA*CAKS
        CE5=1./CBETA2*CALPHA**(1./CBETA2)
С
        DO 800 J=2, NTIME
        write(*,*)j
C
        IF(NODET.EQ.0) GO TO 302
        DO 301 I=1, NODET
        HYDCON(I,1) = E4/(CONA+(ABS(H(I,1))) * *BETA1)
        CCC(I,1)=1./(E5*E2)*(THETAS-THETA(I,1))**(-1./BETA2+1.)*
     1
                  (THETA(I,1)-THETAR)**(1./BETA2+1.)
301
        CONTINUE
        DO 303 I=NODET+1, NNODE
302
        HYDCON(I,1)=CE4/(CCONA+(ABS(H(I,1)))**CBETA1)
        CCC(I,1)=EXP(-(CALPHA*(CTHETAS-THETA(I,1))/(THETA(I,1))
                  -CTHETAR))**(1/CBETA2))*1./(CE5*CE2)*(CTHETAS
     1
     2
                  -THETA(I,1))**(-1./CBETA2+1.)*(THETA(I,1))
     3
                  -CTHETAR) ** (1./CBETA2+1.)
303
        CONTINUE
```

С

		DO 903 $I=2$, NNODE-1
		DIAG(I-1)=2.*CCC(I,1)/HYDCON(I,1)+2.*DELT/DELZ**2
		SUB(I-1) = -DELT/DELZ * 2
		SUP(I-1) = -DELT/DELZ * 2
		IF(I.EQ.NODET)GO TO 901
		IF(I, EQ, NODET+1)GO TO 902
		B(I-1)=2.*CCC(I,1)/HYDCON(I,1)*H(I,1)+DELT/DELZ*.5
	1	*(HYDCON(I+1,1)-HYDCON(I-1,1))/HYDCON(I,1)
	2	*((H(I+1,1)-H(I-1,1))/(2.*DELZ)-1.)
	-	GO TO 903
901		B(I-1)=2.*CCC(I,1)/HYDCON(I,1)*H(I,1)+DELT/DELZ
	1	*(HYDCON(I,1)-HYDCON(I-1,1))/HYDCON(I,1)
	2	*((H(I+1,1)-H(I-1,1))/(2.*DELZ)-1.)
		GO TO 903
902		B(I-1)=2.*CCC(I,1)/HYDCON(I,1)*H(I,1)+DELT/DELZ
	1	*(HYDCON(I+1,1)-HYDCON(I,1))/HYDCON(I,1)
	2	*((H(I+1,1)-H(I-1,1))/(2.*DELZ)-1.)
903		CONTINUE
С		
		B(1)=B(1)-SUB(1)*H(1,2)
		B(NNODE-2)=B(NNODE-2)-SUP(NNODE-2)*H(NNODE,2)
		DO 1000 I=1, NNODE-3
1000		SUB(I) = SUB(I+1)
		M=NNODE-2
		CALL TRID(M, SUP, SUB, DIAG, B)
		DO 1100 I=1,NNODE-2
1100		HP(I+1,2)=B(I)
С		
		IF(NODET.LT.2) GO TO 403
		DO 401 I=2, NODET
	10	THETAP(I,2)=ALPHA*(THETAS-THETAR)/(ALPHA+ABS(HP(I,2))
	1	**BETA2)+THETAR
401		CONTINUE
		DO 402 I=NODET+1, NNODE-1
		THETAP(1,2)=CALPHA*(CTHETAS-CTHETAR)/(CALPHA
	1	+ALOG(ABS(HP(1,2))) **CBETA2)+CTHETAR
		IF(HP(I,2),GE,(-1,0))THETAP(I,2)=CTHETAS
402		CONTINUE
		GO TO 405
403		DO 404 I=2,NNODE-1
		THETAP(1,2)=CALPHA*(CTHETAS-CTHETAR)/(CALPHA
	1	+ALOG(ABS(HP(1,2))) **CBETA2)+CTHETAR
		IF(HP(I,2),GE.(-1,0))THETAP(I,2)=CTHETAS
404		CONTINUE
С		
405		IF(NODET.EQ.0) GO TO 502
		DO 501 $I=1$.NODET
		HYDCON(I,1) = E4/(CONA+(ABS(HP(I,2))) **BETA1)
		CCC(I,1)=1./(E5*E2)*(THETAS-THETAP(I,2))**(-1./BETA2+1.)*
	1	(THETAP(1,2)-THETAR)**(1,/BETA2+1,)
501	*	CONTINUE
502		DO 503 L=NODET+1.NNODE
004		HYDCON(I, 1) = CE4/(CCONA+(ABS(HP(I, 2))) **CBETA1)

	1 2 3	CCC(I,1)=EXP(-(CALPHA*(CTHETAS-THETAP(I,2))/(THETAP(I,2) -CTHETAR))**(1/CBETA2))*1./(CE5*CE2)*(CTHETAS -THETAP(I,2))**(-1./CBETA2+1.)*(THETAP(I,2) -CTHETAR)**(1./CBETA2+1.)
503 C		CONTINUE
		DO 1203 I=2, NNODE-1
		DIAG(I-1)=CCC(I,1)/HYDCON(I,1)+DELT/DELZ**2
		SUB(I-1) = -DELT/DELZ * 2*.5
		SUP(1-1) = -DELT/DELZ * 2*.5
		IF(1,EQ,NODET)GO TO 1201 IF(1,EQ,NODET+1)GO TO 1202
		B(I-1)=CCC(I,1)/HYDCON(I,1)*H(I,1)+DFLT/DEL7*,5
	1	*(HYDCON(I+1,1)-HYDCON(I-1,1))/HYDCON(I,1)
	2	*((HP(I+1,2)-HP(I-1,2))/(2.*DELZ)-1.)
	3	+DELT/DELZ**2*.5*(H(I+1,1)-2.*H(I,1)+H(I-1,1))
		GO TO 1203
1201		B(I-1)=CCC(I,1)/HYDCON(I,1)*H(I,1)+DELT/DELZ
	1	*(HYDCON(I, I)-HYDCON($I-1, I$)/HYDCON(I, I)
	3	((HP(1+1,2)-HP(1-1,2))/(2.*DEL2)-1.) +DELT/DEL7**2* 5*($U(1+1,1)-2,*U(1,1)+U(1-1,1)$)
	0	GO TO 1203
1202		B(I-1)=CCC(I,1)/HYDCON(I,1)*H(I,1)+DELT/DELZ
	1	*(HYDCON(I+1,1)-HYDCON(I,1))/HYDCON(I,1)
	2	*((HP(I+1,2)-HP(I-1,2))/(2.*DELZ)-1.)
1000	3	+DELT/DELZ**2*.5*(H(I+1,1)-2.*H(I,1)+H(I-1,1))
1203 C		CONTINUE
		B(1)=B(1)-SUB(1)*H(1,2)
		B(NNODE-2)=B(NNODE-2)-SUP(NNODE-2)*H(NNODE, 2)
1300		$\frac{1}{2} = \frac{1}{2} = \frac{1}$
1000		M=NNODE-2
		CALL TRID(M, SUP, SUB, DIAG, B)
		DO 1400 I=1, NNODE-2
1400 C		H(I+1,2)=B(I)
		IF(NODET.LT.2) GO TO 603
		DO 601 I=2, NODET
		THETA($I, 2$) = ALPHA*(THETAS-THETAR)/(ALPHA+ABS(H($I, 2$))
601	1	**BETA2)+THETAR
001		DO = 602 I = NODET + 1 NNODE - 1
		THETA($I, 2$)=CALPHA*(CTHETAS-CTHETAR)/(CALPHA
	1	+ALOG(ABS(H(I,2))) **CBETA2)+CTHETAR
		IF(H(I,2).GE.(-1.0))THETA(I,2)=CTHETAS
602		CONTINUE
		GO TO 605
003		DU = 504 = 1 = 2, NNODE-1
	1	$\frac{1}{1} \frac{1}{2} = \frac{1}{2} $
		IF(H(I,2), GE, (-1,0))THETA(I,2)=CTHETAS
604		CONTINUE /
C		

0	2	-
h	U	5
0	~	•

IF	(J.EQ.2161)	GO TO 111
IF	(J.EQ.4321)	GO TO 111
IF	(J.EQ.6481)	GO TO 111
IF	(J.EQ.8641)	GO TO 111
IF	(J.EQ.10801)	GO TO 111
IF	(J.EQ.12961)	GO TO 111
IF	(J.EQ.15121)	GO TO 111
IF	(J.EQ.17281)	GO TO 111
IF	(J, EQ, 19441)	GO TO 111
IF	(J.EQ.21601)	GO TO 111
IF	(J.EQ.23761)	GO TO 111
IF	(J.EQ.25921)	GO TO 111
IF	(J.EQ.28081)	GO TO 111
IF	(J.EQ.30241)	GO TO 111
IF	(J.EQ. 32401)	GO TO 111
IF	(J.EQ.34561)	GO TO 111
IF	(J.EQ. 36721)	GO TO 111
IF	(J.EQ. 38881)	GO TO 111
IF	(J.EQ.41041)	GO TO 111
IF	(J, EQ, 43201)	GO TO 111
IF	(J, EQ, 45361)	GO TO 111
IF	(J, EQ, 47521)	GO TO 111
IF	(J, EQ, 49681)	GO TO 111
IF	(J, EQ, 51841)	GO TO 111
IF	(J, EQ, 54001)	GO TO 111
IF	(J, FQ, 56161)	GO TO 111
IF	(J, EQ, 58321)	GO TO 111
IF	(J, EQ, 60481)	GO TO 111
IF	(J, EQ, 62641)	GO TO 111
IF	(J, EQ, 64801)	GO TO 111
IF	(J, EQ, 66961)	GO TO 111
IF	(J, EQ, 69121)	GO TO 111
IF	(J, EQ, 71281)	GO TO 111
IF	(J, FQ, 73441)	GO TO 111
IF	(J, EQ, 75601)	GO TO 111
T F	(I = EQ. 77761)	GO TO 111
IF	(1 FQ, 79921)	GO TO 111
IF	(1 E 0 82081)	GO TO 111
TF	(1 E 0.84241)	GO TO 111
IF	(1 FO 86401)	GO TO 111
IF	(J, EQ, 00401)	GO TO 111
TE	(J, FQ, 90721)	GO TO 111
IF	(1 FO 92881)	GO TO 111
IF	(J = FO = 95041)	GO TO 111
TE	(J, EQ, 50041)	GO TO 111
IF	(J, EQ, 9/201)	GO TO 111
IF	$(J \cdot EQ \cdot 99301)$	GO TO 111
1 1 1	(J, EQ, 101521)	GO TO 111
IF	(1 FO 105001)	GO TO 111
11	(J.EW.100041)	GO TO 111
1 F	(J.EW.108001)	
IF	(J.EQ. 110101)	
IF	$(J \cdot EQ \cdot 112321)$	
IF	(J.EQ.114481)	GO TO III
IF	(J.EQ.116641)	GO TO III
1 F	(J.EG.118801)	GO TO 111

	IF (J.EQ.120961) GO TO 111
	IF (J.EQ.123121) GO TO 111
25	IF (J.EQ.125281) GO TO 111
	IF (J.EQ.127441) GO TO 111
	IF (J.EQ.129601) GO TO 111
	IF (J.EQ.131761) GO TO 111
	IF (J.EQ.133921) GO TO 111
	IF (J.EQ.136081) GO TO 111
	IF (J.EQ.138241) GO TO 111
	IF (J.EQ.140401) GO TO 111
	IF (J.EQ.142561) GO TO 111 $IF (J.EQ.144721) GO TO 111$
	IF (J.EQ.144721) 00 10 111 IF (J.FO.146881) CO TO 111
	IF (J, EQ, 149041) GO TO 111
	IF (J, FQ, 151201) GO TO 111
	GO TO 333
111	CONTINUE
С	
С	ESTIMATION OF EVAPORATION RATES
С	
	IF(NODET.EQ.0) GO TO 702
	DO 701 I=1,NODET
	HYDCON(I,2) = E4/(CONA+(ABS(H(I,2))) **BETA1)
701	CONTINUE
702	DO 703 I=NODET+1, NNODE HVDGON(I, Q) = GE4/(GGONA+(ADG(H(I, Q))) + CDETA1)
702	HIDCON(1,2) = CE4/(CCONA+(ABS(H(1,2))) + CBEIAI)
703 C	CONTINUE
U	EVAP = 0.0
	DO 222 N = 2, NNODE
	EVAP=EVAP+((HYDCON(N,2)*HYDCON(N-1,2))**0.5)*
1	(((H(N,2)-H(N-1,2))/DELZ)-1.0)*240.0
222	CONTINUE
	EVAP = EVAP/(NNODE-1)
	IF(EVAP.GT.6.0)EVAP=6.0
С	
	ITIME=J-1
	HOUR=ITIME*DELT
F 4	WRITE $(2,51)$ ITIME, HOUR
51	FURMAT($/2X$, TIME STEP = , 17, 6X, DURATION = , FIU. 4, 1X, HOURS /) WRITE(2, 52)(THETA(1, 2), 1-1, NNODE)
52	$\pi r r r (5z) (r r c r (1, 2), r - r, r r ODC)$
52	$WRITTF(2 \times)$
	WRITE(2,53)(H(1,2), I=1, NNODE)
53	FORMAT(5F12,6)
00	WRITE(2.54)EVAP
54	FORMAT(/2X, 'EVAPORATION LOSSES = ', F12.6, 'MM/DAY'//)
333	CONTINUE
С	
	DO 1500 I = 2, NNODE-1
	THETA(I,1) = THETA(I,2)
	H(I,1) = H(I,2)
1500	CONTINUE
С	
800	CONTINUE

STOP END

END

```
SUBROUTINE TRID(M, SUP, SUB, DIAG, B)
DIMENSION SUP(100), SUB(100), DIAG(100), B(100)
N=M
NN=N-1
SUP(1)=SUP(1)/DIAG(1)
B(1)=B(1)/DIAG(1)
DO 61 I=2,N
II = I - 1
DIAG(I)=DIAG(I)-SUP(II)*SUB(II)
IF (I.EQ.N) GO TO 61
SUP(I) = SUP(I) / DIAG(I)
B(I)=(B(I)-SUB(II)*B(II))/DIAG(I)
DO 62 K=1,NN
I = N - K
B(I)=B(I)-SUP(I)*B(I+1)
RETURN
```

61

С

LAYERS.DAT

0.075	0.287	0.124	0.195	
4.740	3.960	1.770	4.000	
1175000.000	1611000.000	124.600	739.000	
34.00000	0.04428			
0.01111111	4.000			
32401	21			
25.00				
00.75				
34.00				
-80.000000	-76.000000	-72.000000	-68.000000	-64.000000
-60.000000	-56.000000	-52.000000	-48,000000	-44,000000
-40.000000	-36.000000	-32.000000	-28.000000	-24.000000
-20.000000	-16.000000	-12.000000	-8,000000	-4.000000
-0.000000				

APPENDIX - IV

LAYERS.OUT

EVAPORATION FROM LAYERED SOILS IN THE PRESENCE OF A WATER TABLE

SAND OVERLYING YOLO LIGHT CLAY

ONE DIMENSIONAL RICHARDS EQUATION IMPLICIT SCHEME WITH IMPLICIT LINEARIZATION

WATER TABLE DEPTH 80.000

THICKNESS OF TOP LAYER 34,000

TEMPERATURE IN CENTIGRADE 25.00 RELATIVE HUMIDITY OF THE AIR .750

THETAR	THETAS	CTHETAR	CTHETAS
.075	.287	.124	.495
BETA1	BETA2	CBETA1	CBETA2
4.740	3.960	1.770	4.000
CONA	ALPHA	CCONA	CALPHA
1175000.000	1611000.000	124.600	739.000
AKS	CAKS		
34.00000	.04428		
DELT	DELZ		
.01111111	4.000		
NTIME	NNODE		
32401	21		

SOIL MOISTURE AND SOIL WATER PRESSURE PROFILES

INITIAL CONDITIONS

084491	086512	089078	092362	096593
.004451	.080512	.083018	.092302	.090393
.102077	.109212	.118487	.130462	.414413
.420664	.427316	.434402	.441955	.449999
,458540	.467530	.476798	.485845	.493155
.495000				
-80.000000	-76.000000	-72.000000	-68.000000	-64.000000
-60.000000	-56.000000	-52.000000	-48.000000	-44.000000
-40.000000	-36.000000	-32.000000	-28.000000	-24.000000
-20.000000	-16.000000	-12.000000	-8.000000	-4.000000
.000000	5			

TIME STEP	= 90	DURATION	= 1.0000	HOURS
.075018	.077448	.081679	.086704	.092514
.099304	.107439	.117440	.129943	.414400
.420664	.427316	.434402	.441955	.449999
.458540	.467530	.476798	.485845	.493155
.495000				
-396.140700	-113.614200	-87.727610	-75.664870	-67.836300
-61.891670	-56.899960	-52.402660	-48.154470	-44.009010
-40.000360	-36.000000	-32.000000	-28.000000	-24.000000
-20.000000	-16.000000	-12.000000	-8.000000	-4.000000
.000000				
EVAPORATION	1 LOSSES	= 4.4	456627 MM/I	DAY
	01.00		01 0000	HOUDG
TIME STEP	= 2160	DURATION	= 24.0000	HOURS
075010	070001	000169	004200	000204
.075018	102222	112226	125009	113002
.093449	. 103333	.113330	.123990	.413032
.419/9/	.420/00	.434004	.441704	.445015
.458470	.40/489	.4/6//5	.480835	.495152
.495000				
-396 140700	-121 195400	-03 700650	-80 642970	-71 826940
- 590.140700	-121.193400	-54 001790	-49 377400	-11.820540
-04.983470	-36, 220000	-32 194940	-28 104160	-24 058020
-20 032050	-16 017810	-12 009990	-8 005422	-4.002445
000000	-10.01/010	-12,003330	-0.003422	4.002440
.000000				
EVAPORATIO	LOSSES	= 5.	094581 MM/	DAY
TIME STEP	= 4320	DURATION	= 48.0000	HOURS
.075018	.076854	.080029	.083969	.088834
.094914	.102592	.112340	.124697	.412477
.419207	.426236	.433613	.441386	.449594
.458255	.467335	.476673	.485777	.493136
.495000				
-396.140700	-121.973300	-94.432570	-81.203700	-72.342020
-65.466160	-59.673200	-54.531120	-49.801910	-45.290020
-40.910630	-36.632130	-32.432740	-28.292580	-24.195880
-20.129850	-16.084810	-12.053690	-8.031530	-4.014567
.000000				
EVAPORATIO	N LOSSES	= 5.	000982 MM/	DAY

TIME STEP =	6480	DU.	RATION	=	72.0000	HOURS
.075018	.076823	21	.079944		083815	088594
.094567	.102110		.111691		123845	412067
.418804	425857		433271		441089	149347
458060	467189		176573		495721	449347
.495000	. 101105		. 470575		.403721	.493119
-396.140700 -1	22.489000	-94	.852460	-81	.575970	-72.684360
-65.787480 -	59.978860	-54	.824730	-50	.086120	-45.566640
-41.164970 -	36.855930	-32	.621540	-28	.445650	-24.315190
-20.219240 -	16.148750	-12	.096790	-8	.057665	-4.026789
.000000						
EVAPORATION L	OSSES	=	4.	94060	5 MM/I	DAY
TIME STEP =	8640	DUI	RATION	=	96.0000	HOURS
075018	076902		070004		092706	000405
.073018	101771	_	1110004		1003706	.088425
.094323	. 101771		422010		123243	.411774
410312	.420080		433019		440868	.449161
.407910	.40/0/6		.476496		485677	.493107
.495000						
-396.140700 -1	22.858100	-95	153080	-81	842580	-72,929640
-66.017780 -	60.197960	-55	.035210	-50.	289890	-45,765010
-41.349380 -	37.019540	-32.	760890	-28.	560120	-24.405570
-20.287630 -	16.198080	-12	130170	-8.	078013	-4.036304
.000000						
EVADODATION I	OCOFC			20000		
EVAPORATION L	000550	=	4.8	39828:) MM/1	JAY
TIME STEP =	10800	DUF	RATION	=]	20.0000	HOURS
.075018	.076786		079840		083627	088303
.094145	,101524		110899	_	122805	411558
.418299	425378	1	432834		440706	449025
.457801	466993		476439		485645	493097
.495000	. 100000		110105	•	100010	1455057
1100000						
-396.140700 -1:	23.129700	-95.	374380	-82.	038850	-73.110160
-66.187190 -0	60.359150	-55.	190080	-50.	439850	-45.911060
-41.484620 -:	37.139650	-32.	863090	-28.	643840	-24.471570
-20.337370 -	16.234080	-12.	154610	-8.	092898	-4.043263
.000000						
EVAPORATION L	JAALA	-	1 0	67475	MM /r	AV
DIALORATION D	00000		4.0	01410	mm/L	AI

TIME STEP	= 12960	DURATION	= 144.0000	HOURS
.075018	.076775	.079808	.083570	.088213
.094016	.101344	.110657	.122485	.411401
418143	425230	432700	440589	.448926
457799	466934	476398	485622	493091
.495000	.400934	. 470350	. 405022	. 100001
-396.140700	-123.329100	-95,536930	-82.183060	-73.242860
-66.311830	-60.477710	-55,303980	-50.550130	-46.018410
-41.583930	-37.227390	-32,937770	-28,704790	-24.519630
-20 373780	-16 260250	-12 172320	-8,103634	-4.048285
.000000	10.200200	12.11.0000	0.100.001	
EVAPORATION	LOSSES	= 4.8	845006 MM/1	DAY
			100 0000	HOUDA
TIME STEP	= 15120	DURATION	= 168.0000	HOURS
.075018	.076767	.079785	.083528	.088148
.093922	.101213	.110480	.122252	.411285
.418028	425121	.432600	.440502	.448853
457663	466889	476367	485605	. 493086
.495000	.400005	. 110001	. 100000	
-396.140700	-123.475400	-95.656170	-82.288800	-73.340160
-66.403190	-60.564660	-55.387540	-50.631060	-46.097200
-41.656990	-37.292130	-32.992840	-28.750030	-24.555290
-20.400690 .000000	-16.279680	-12.185450	-8.111624	-4.052022
EVAPORATION	I LOSSES	= 4.	828610 MM/	DAY
TIME STEP	= 17280	DURATION	= 192.0000	HOURS
.075018	.076761	.079768	.083498	.088101
.093853	.101118	.110351	.122083	.411200
.417944	.425040	.432527	.440437	.448799
457619	466856	476345	485592	,493082
.495000	1100000		1100001	
-396.140700	-123.582900	-95.743800	-82.366550	-73.411640
-66.470250	-60.628410	-55.448740	-50.690270	-46.154790
-41.710670	-37.340240	-33.033880	-28.783470	-24.581620
-20.420680	-16.294060	-12.195140	-8.117532	-4.054773
EVAPORATION	LOSSES	= 4.	816775 MM/	DAY

TIME STEP	= 19440	DURATION	= 216.0000	HOURS
.075018	.076756	.079756	.083475	.088065
.093801	.101046	.110253	,121954	. 411136
.417881	.424981	.432474	. 440391	448760
457588	466832	476328	485583	492070
.495000	. 100002	. 470320	. 405505	.493079
-396.140700	-123,663600	-95,809590	-82,424940	-73.465420
-66.520820	-60.676570	-55,495100	-50 735210	-46 198620
-41.750860	-37 375230	-33 063350	-28 807540	-24 600640
-20 435060	-16 304500	-12 202220	-20.007340	-24.000040
.000000	-10.304300	-12.202230	-8.121819	-4.056775
EVAPORATION	V LOSSES	= 4.8	807635 MM/	DAY
TIME STEP	= 21600	DURATION	= 240,0000	HOURS
		Dominion	110.0000	neono
.075018	.076753	.079747	.083458	.088040
.093765	.100995	.110185	.121864	.411091
.417835	.424937	.432433	.440355	.448730
.457564	.466814	.476316	.485576	.493077
.495000				12
-396.140700	-123.721200	-95.856570	-82.466580	-73.503690
-66.556690	-60.710690	-55.527810	-50.766830	-46.229370
-41.779980	-37.401550	-33.085810	-28.825950	-24.614840
-20.445880	-16.312330	-12.207520	-8.125056	-4.058288
.000000				
EVAPORATION	LOSSES	= 4.8	301403 MM/I	DAY
TIME STED	- 23760	DUDATION	- 264 0000	HOUDS
TIME STEP	- 23700	DURATION	- 204.0000	HOURP
.075018	.076751	.079740	.083447	.088022
.093739	.100959	.110136	.121800	.411059
.417804	.424909	.432408	.440333	.448711
.457549	.466803	.476308	.485572	493076
.495000				100010
-396.140700	-123.761800	-95.889740	-82,495990	-73,530760
-66.582150	-60.734940	-55.551140	-50,789450	-46,251380
-41.799910	-37,418380	-33.099910	-28,837520	-24.624110
-20,452790	-16,317140	-12,210740	-8,126981	-4.059187
.000000	101011110	12, 210, 40	0.120001	4.000107
EVAPORATION	LOSSES	= 4.7	96802 MM/T	AV

64

......

TIME STEP	= 25920	DURATION	= 288.0000	HOURS
.075018	.076749	.079735	.083438	.088008
093718	.100931	.110098	.121749	.411033
117770	124884	432385	.440313	.448695
.417779	466703	476301	485568	.493075
.457536	.400793	.470301	. 400000	
206 140700	-123 703000	-95,915850	-82.519180	-73.552150
-390.140700	-123.153500	-55 569480	-50,807250	-46.268760
-66.602260	-60.754030	-00.000400	-28 848000	-24,632130
-41.815480	-37.433000	-33.112730	-28.040000	-4.060034
-20.458840	-16.321560	-12.213730	-0.120730	-4.000004
EVAPORATION	LOSSES	= 4.7	793239 MM/	DAY
	22222	DUDATION	- 212 0000	HOURS
TIME STEP	= 28080	DURATION	= 312.0000	noons
.075018	.076747	.079731	.083431	.087997
.093703	.100909	.110068	.121711	.411014
417760	424867	.432369	.440300	.448684
457528	466788	476298	.485565	.493074
.495000	. 100100			
-396.140700	-123,818000	-95.935570	-82.536710	-73.568300
-66.617440	-60.768560	-55.583510	-50.820820	-46.281960
-41,828110	-37.443500	-33.121350	-28.854800	-24.637290
-20.462520	-16.324030	-12.215330	-8.129799	-4.060500
.000000				
EVAPORATION	N LOSSES	= 4.	790444 MM/	DAY
TIME STEP	= 30240	DURATION	= 336.0000	HOURS
075018	.076747	.079730	.083428	.087992
093696	100899	.110055	.121693	.411005
.033030	124860	432364	440295	.448680
.417754	424000	476206	485565	493074
.457525	.400703	.470230	. 400000	. 150011
-396,140700	-123.829700	-95.945110	-82.545180	-73.575970
-66,624620	-60,775350	-55.589960	-50.827010	-46.287950
-41,833180	-37,447560	-33,124570	-28.857330	-24.639210
-20, 463910	-16,324980	-12,215930	-8,130152	-4.060676
.000000	10,024000	10.010000		10
FVAPORATIO	N LOSSES	= 4.	789237 MM	/DAY

FIME	STEP	=	<mark>32</mark> 400		DURATION	Ξ	360.	0000	HOURS
.(75018		.076747		.079730		.083	428	.087992
.(93696		.100899		.110055		.121	693	.411005
. 4	17752		.424860		.432364		.440	295	.448680
. 4	57525		.466785		.476296		.485	565	.493074
. 4	95000								
396.1	40700	-1	23.829700	-	95.945110	-8	2.545	180	-73.575970
-66.6	24620	-	60.775350	-	55.589960	-5	0.827	010	-46.287950
-41.8	33180	835	37.447560	-	33.124570	-2	8.857	330	-24.639210
-20.4	63910	2	16.324980	-	12.215930	-	8.130	152	-4.060676
• 0	00000								
EVAPC	RATION	L	OSSES	=	4.7	892	37	MM/I	DAY
	FIME .C .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4	TIME STEP .075018 .093696 .417752 .457525 .495000 396.140700 -66.624620 -41.833180 -20.463910 .000000 EVAPORATION	TIME STEP = .075018 .093696 .417752 .457525 .495000 396.140700 -1 -66.624620 - -41.833180 - -20.463910 - .000000 EVAPORATION L	TIME STEP = 32400 .075018 .076747 .093696 .100899 .417752 .424860 .457525 .466785 .495000 -123.829700 -66.624620 -60.775350 -41.833180 -37.447560 -20.463910 -16.324980 .000000 EVAPORATION LOSSES	TIME STEP = 32400 .075018 .076747 .093696 .100899 .417752 .424860 .457525 .466785 .495000 .466785 .396.140700 -123.829700 -66.624620 -60.775350 -41.833180 -37.447560 -20.463910 -16.324980 .000000 .000000	TIME STEP= 32400 DURATION.075018.076747.079730.093696.100899.110055.417752.424860.432364.457525.466785.476296.495000.416785.476296.495000.95.945110-66.624620-60.775350-55.589960-41.833180-37.447560-33.124570-20.463910-16.324980-12.215930.000000.000000.4.76296	TIME STEP= 32400 DURATION=.075018.076747.079730.093696.100899.110055.417752.424860.432364.457525.466785.476296.495000.476296.495000396.140700-123.829700-95.945110-8-66.624620-60.775350-55.589960-50-41.833180-37.447560-33.124570-23-20.463910-16.324980-12.215930-4.000000.000000	TIME STEP= 32400 DURATION= $360.$.075018.076747.079730.083.093696.100899.110055.121.417752.424860.432364.440.457525.466785.476296.485.495000.466785.476296.485.996.140700-123.829700-95.945110-82.545-66.624620-60.775350-55.589960-50.827-41.833180-37.447560-33.124570-28.857-20.463910-16.324980-12.215930-8.130.000000.000000.000000.000000	TIME STEP= 32400 DURATION= 360.0000 .075018.076747.079730.083428.093696.100899.110055.121693.417752.424860.432364.440295.457525.466785.476296.485565.495000.46785.476296.50.827010-66.624620-60.775350-55.589960-50.827010-41.833180-37.447560-33.124570-28.857330-20.463910-16.324980-12.215930-8.130152.000000.000000.000000.000000
DIRECTOR : S. M. SETH

DIVISIONAL HEAD : G. C. MISHRA

SCIENTIST : C. P. KUMAR

DRAWING STAFF : NARENDRA KUMAR