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Preface 

Nearly 65 percent of the country's land area is occupied by hard rocks which 

include entire central and south India. The exploitation of groundwater in these areas 

is mainly through large diameter wells (popularly known as dug wells). The weathered 

and fractured zones of hard rock has highly heterogeneous nature with low 
transmissivity varying from 1 m2/d to 300 m2/d. Assessment of groundwater resources of 
these areas is vital and requires evaluation of aquifer parameters. These parameters 

can be evaluated utilizing the drawdown data obtained during pump-tests conducted at 
large diameter wells. 

The Evaluation of aquifer parameters makes use of the theory describing the 

flow towards a large diameter well. Most of the analytical theories developed in the 

recent past pertain to fully penetrating large diameter wells. A large diameter well 

may be of partially penetrating nature due to specific site condition and cost 

constraint. Rapid and reasonable evaluation of aquifer parameters can be achieved 

through a computationally simple solution. Therefore, simple solution for the flow 

problem associated with pumping a partially penetrating large-diameter well is needed. 

In the present report. a simple methodology has been developed for obtaining 

transient drawdowns due to pumping a partially penetrating large diameter well. Flow 

from bottom of the well has also been taken into account. The temporal variation of 

contributions from well-storage and aquifer storage have also been analyzed. The 
present study has been carried out by Mr. S.K. Singh, Scientist 'C'. The author is 
thankful to Dr. G.C. Mishra. Scientist 'F for going through the draft derivations. 
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Abstract 

Large diameter wells are economical and ideal for groundwater extraction in low 

transmissivity aquifers, such as fractured or fissured rocks. Storage within the well 

plays an important role when a large diameter well is pumped. A part of the pumped 

discharge is contributed by the well-storage which is substantial during initial phase 

of pumping. Well-storage contribution decreases with increase in time and after 

sufficiently long time, it becomes zero. Several studies pertaining to the analysis of 

flow towards a fully penetrating large diameter well, have been reported in the 

literature. A large diameter well may penetrate the aquifer partially because of 

construction and other constraints. 

The present study deals with the analysis of flow to a partially penetrating 

large diameter well considering the flow through the bottom of the well. A simple 

methodology has been evolved for obtaining transient drawdown in the well as well as 

in the aquifer. The methodology enables the determination of aquifer contribution to 

the pumped discharge through the circumference as well as through the bottom of the 

well apart from the determination of well-storage contribution to the pumped 

discharge. 
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1.0 INTRODUCTION 

Large diameter wells have been dug in India for centuries and millions are 
still found which serve the primary source of water particularly in hard rock regions 
of southern India. A large diameter well (dug well) utilizes the well-storage during 
pumping, hence, is ideally suited for the aquifers with low transmissivity. During 
initial phase of pumping, a substantial portion of well discharge comes from well 
storage, and this limits the well-loss component of drawdown to almost negligible. 
Even during later phase of pumping only a part of discharge is taken from the aquifer 
and due to this, the well loss component is less than that observed in case of a tube 
well. When the pump is stopped, water continues to flow into the well and well-storage 
recoups. 

The prominent theoretical studies describing the flow regime associated with . 
fully penetrating large diameter wells are by Papadopulos and Cooper(1967), Basak 
(1982), Patel and Mishra (1984). In practical situation, a large diameter well may 
partially penetrate the aquifer. In such case, a part of the aquifer-contribution to 
the pumped discharge comes through the bottom of the well. Though, few numerical 
studies have been reported (Herbert and Kitching, 1981 and Sridharan et al., 1990) on 
partially penetrating large diameter wells, the lone analytical study is by Boulton 
and Streltsova (1976) which involves a large number of parameters and computations of 
Bessel function of various kinds and orders. Therefore, analytical/semi-analytical 
solution involving simple computations to the flow-problem associated with a partially 
penetrating large diameter well, is needed. 

In the present study, a computationally simple methodology has been evolved for 
finding transient drawdown in partially penetrating well, as well as, in the aquifer 
when the well is pumped at a constant rate. Temporal variations of well-storage 
contribution, aquifer-contribution through well-bottom, and through the circumference 

of the well, have also been analyzed. The methodology is applicable for confined 
aquifers or aquifers behaving like confined aquifers under natural and imposed 
conditions. 



2.0 REVIEW 

A detailed review of the past studies done on large diameter wells can be had 

from Singh (1990). However, a brief review pertaining to the present study is given 

below. 

Papadopulos and Cooper (1967) obtained the following equation for drawdown due 

to pumping a fully penetrating large diameter well in an infinite confined aquifer 

assuming that the drawdown in the aquifer at the well face is equal to the drawdown in 

the well. 

s(r,t) = 

where, 

F(u,cc,o) ...(2.1) 

r2s 
u = 41'1 • ' 

...(2.2) 

r2 

a = S • ' 
...(2.3) 

rc 

...(2.4) 
0 rw  

in which, 

Q = constant rate of pumped discharge, 

T = transmissivity of the aquifer, 

S = storage-coefficient of the aquifer, 

r = radial distance from the centre of the well, 

rw 
= radius of well -screen, 

rc 
= radius of well casing ( unscreened part of the well), 

t = time since the commencement of the pumping. 
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Thus, the drawdown in the well is given by, 

sw(t) = 4-9T  F(uw,a,l) ...(2.5) 

After the pioneering work of Papadopulos and Cooper (1967), Patel and 

Mishra(1984) proposed a simple methodology using discrete kernel approach to find the 

drawdown in a large diameter well and aquifer contribution to the pumped discharge. 

They also assumed that the drawdown in the well to be equal to the drawdown in the 

aquifer at the well face. Since then, several investigators used discrete kernel 

approach in one or other form for solving flow problems associated with large diameter 

wells, e.g., Rushton and Singh (1987), Mishra and Chachadi(1985), Singh and Gupta 

(1986), etc. Basak(1992) has presented analytical solution for recovery in large 

diameter wells and Rajgopalan and Jose (1986) have proposed a numerical model to 

simulate the flow towards a dug well. 

Flow to Partially penetrating large diameter well has been analyzed using 

numerical approach by Herbert and Kitching(1981), Rushton and Holt(1982), Sridharan et 

al.(1990), etc. Boulton and Streltsova(1976) have given a analytical model for the 

transient flow to a partially penetrating large diameter well in an unconfined aquifer 

taking into account the anisotropy of the aquifer in respect of hydraulic conductivity 

and compressibility. Their solution involves a large number of parameters and requires 

the computations of Bessel functions; this makes its application difficult. 

From critical review of the available literature, it is observed that the 

computationally simple solution for drawdown due to pumping a partially penetrating 

well has not been obtained so far. 

3 



3.0 STATEMENT OF THE PROBLEM 

A large diameter well of radius rw  partially penetrates a homogeneous isotropic 

and semi-infinite confined aquifer of thickness D. Depth of well penetration is d and 

bottom of the well is open. The well draws water from full depth of its penetration. A 

schematic vertical section of the aquifer and the well is shown in fig.3.1. 

Initially, the well water level and the aquifer water table are assumed at the 

equilibrium. The well is pumped for certain period. The problem is to find the 

following considering also the flow from the bottom of the well. 

Temporal variations of the contributions to the pumped discharge from well-

storage, and aquifer-storage (through well-circumference and well-bottom 

separately) respectively. 

Drawdown in the well as well as at a certain distance from the well. 

4 



(P
u
m

p
in

g
) 

.
.
/
/
/
/
/
/
/
/
/
/
7

•
 

K
 , 

S
 

Im
p

e
rm

e
a

b
le

 B
o

u
n

d
a

n
 

K
 , 

S
 

d
ia

m
e

te
r 

3
-8

 m
 

/
/
V

 
z
/
/
/
 
X

/
V

V
/
7

/
7

/
/
/
/
/
/
/
/
/
/
 

Im
p

e
rm

e
a

b
le

 B
o

u
n

d
a

ry
 

F
ig

.3
.1

—
S

ch
e
m

a
tic

 V
e
rt

ic
a
l S

e
ct

io
n
 o

f 
th

e
 A

q
u
ife

r 
a
n
d
 W

e
ll 



4.0 MATHEMATICAL FORMULATION 

The following assumptions have been made for the present mathematical 

formulation. 

Total pumping period has been discretized into a number of uniform time steps of 

size At. 

The abstraction rate, the well storage contribution and the aquifer contribution 

through the well circumference as well as through the well bottom are constant 

during each time step. 

Drawdown in the well is equal to the drawdown in the aquifer at the well face at 

each time step. 

The aquifer has been hydrologically decomposed into two layers (fig.3.1). The 

thickness of the first layer. is equal to the depth of well penetration, i.e., d. 

Hydraulic conductivity, i.e. K is same for both the layers. T1 and T2 are the 

transmissivity of the first and second layer respectively and S1 and S2 are the 

storage coefficients of the top and bottom layer respectively. 

Both the layers have been discretized in plan identically into a number of 

elements(grids) by a set of radial lines and a set of concentric circles with their 

centres at the well centre as shown in fig. 4.1. Let 'i' be the index denoting the 

annular space between the two consecutive circles and 'j' be the index denoting the 

diverging space between two radial lines. Uniform angular spacing between the radial 

lines has been assumed. Let M and N be the total numbers of diverging spaces and 

annular spaces respectively. Exchange of flow between the layers has been assumed 

uniform over a grid. The total flow from one layer to other layer through a grid is 

assumed to be concentrated at the centre of the grid. Let at be the uniform time step. 

The continuity equation for flow, at the well during nth time step may be 

written as, 

Qa(tl) Qb(II) + Qw(n) = Q(n) ...(4.1) 

6 



Fig. 4.1-Discretization of Aquifer in Plan 
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where, 

Qa(n) = aquifer contribution to pumped discharge through the circumference of 

the well during nth time step; 

Qb(n) = aquifer contribution to pumped discharge through well-bottom during nth 

time step; 

Qw
(n) = well storage contribution to well discharge during nth time step, and; 

Qp(n) = pumping rate during nth time step. 

Drawdown, sw(n), in the well at the end of nth time step can be expressed as, 

sw(n) — at E Q
w

(7) 
2 ur w 7=1  

...(4.2) 

Recharge from the first layer to the second layer through grid, (i,j), during 

nth time step, i.e., q. .(n), is given by, 

qi  (n) = ja h• [s. • ...(4.3) 

where, 

A. • = plan area of the grid (i,j), 

d• • = rawdowns at the centre of grid (i,j) in first layer, 

d• • = rawdowns at the centre of grid (i,j) in second layer. 

Aquifer contribution through the well bottom during nth time step is given by 

the following equation. 

8 



2Kirr2 
w r 

Qb(11)  = 7157--dl rw(n) s0,0,2(11)] 
... (4.4) 

where, 

50,0,2(n) =drawdown at grid (0,0) in the second layer at the end of nth time 

step; 

s(n) = drawdown in the first layer at the well face at the end of nth time 

step. 

Since, within an annular space all the grids are symmetric and have same value 

of recharge, sw(n) and s002 
 (n) can be expressed by the following equations. 

s (n) = E Qa(7)6 / (0,0;0,0;n-7-F1) E Qh(7).3,(0,0;0,0;n-1H-1) 

7.1 7=1  

 

n N 

M E qi,1(7)a1(i,1;0,0;n-7 + 

7=1 1=1 

... (4.5) 

and, 

s (n) = E Q,(032(0,0;0,0;n_7+1) - 
0,0,2 

7=1 

 

 

n N 

E E q1
,
1(7),32(i,1;0,0;n_74-1) 

=1 iTi 

.(4.6) 

Discrete pulse kernel, a i(i,j;k,I;m) is given by, 

a (i,j ,k,1;m) = dr, [W{f(m)} - W{f(m-1)}1 ... (4.7) 

9 



in which, 

co 

W(u) — exp(-u) du 
...(4.8) 

and, 

S foul/  _ ijkl 1 
4'f mat 1 

...(4.9) 

where, 

rikl = distance between the centres of grids (i,j) and (1,k) respectively; j 
m = index denoting the time step. 

The expression for (32(.) can be obtained by substituting T2  and S2  in place of 

Ti  and S1, respectively, in the corresponding equations for 31(.). When (i,j) is equal 

to (1,k), the grid (i,j) is divided into four sub grids as shown in fig.4.2. Recharge 

in proportion to the area of sub-grids were assumed to occur at the respective centres 

of the sub-grids; the total recharge through all the sub-grids being equal to the 

recharge from grid(i,j). Therefore, the discrete pulse kernel, 61(i,j;i,j;m) is given 

by, 

a / (i,j;i,j;m)=
' 
c17,— [4, (m)} - Wifi(m-1)1+42(m)} - 41(m-1)}] 

1 1  

...(4.10) 

in which, 

r2S 1 1 
fl(m)  Tr-C=1 

...(4.11) 

10 
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and, 

r2S 2 1  
f2(111) 4T1  mat 

...(4.12) 

Where, r1 and r2 
are the respective distances from the centres of the two 

unsymmetrical sub-girds to the centre of the grid (i,j). Substituting eqs. (4.5) & 

(4.6) into eq. (4.4), we get, 

D-d 
—2- Qb(n) = E Qa(z)31(0,0;0,0;n-7 +1) - E Q0812(3,003,0,n-,1- 1) 

2iriCrw 7=1 7=1 

n N 

M Eqi,1(7)812(i'1,0,0;n-7 + 1) 
...(4.13) 

7=1 1=1 

8120 is defined by the following equation. 

612" ± '20 ... (4.14) 

Drawdown at the centre of the grid (i,j) in the first layer at the end of nth 

time step, • • (n ), is given by, 
si,j, 1 

s 
1 
 (n) = E Qa(7)(31(0,0;i,j;n-T +1) - 1 Q (7)8 (0 CP j•n-T + 1) 

7=1 7=1 

12 



n NM 

E X E c1,k(7)81(1,k;i,j;n-7+1) 

r=1 1=1 k=1 

...(4.15) 

Drawdown at the centre of the grid (i,j) in the second layer at the end of nth 

time step, s 2(n), is given by, 

siw2(n) = E Qb(7)62(0,0;iwn_7+1) _ 

T=1 

n NM 

7=1 1=1 k=1 

...(4.16) 

From eqs. (4.3), (4.15), & (4.16), we obtain, 

2/(A.  q;  .(n) = - E Qa(7)81(0,0;iwo E Qb(7)8120,°
;i,n-7+1) 

1,j "J 7=1 7=1 

n N M 

E E E q (7)612(l,k;i,J ;n_T-1-1) 

7=1 i=1 k=1 

...(4.17) 

Since, the drawdown in the well is equal to the drawdown in the aquifer at the 

well face, hence, equating these drawdowns from eqn. (4.2) and (4.5), we get, 

13 
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n-1 
Q ) = Qa(n)si(0,0;0,0;n-y+1) - E Qb(y)31(0,0;0,0;n-y+1) 

w y=1 7=1 

N n-1 n-1 

+ M E qi.1(451(i,1;0,0;n-y+1) - ±t2- Q
vi

cy) 

i=1 y=1 Tri"W 7=1 

...(4.20) 

Similarly, re-arranging eq. (4.17), we get, 

- Qb(n)512(0,0;i,j;1) + .ne A q(n) + 
`ani,j 

N M nA 

M c1,k(7)8 / 2(1,k:i,j;1) = - Qa(7)810,0:ii;n-7+i) + 

1=1 k=1 7=1 

n-1 N M 

E Qb(7)6,20,0;iwn_7+0 - M E L ci1,k(7)612(1'1Ci W il-7+1)  
7=1 7=1 i=1 k=1 

...(4.21) 

Eqs. (4.1), (4.20) & (4.21) can be expressed in matrix form as given below. 

[A][x] = [13] ...(4.22) 

where, [13] is a vector, whose elements are, 

15 



b1 = Q(n) 

b = R.H.S. of eq (4.19) 

b3 = R.H.S. of eq' (4.20) 

b(i+3) = R.H.S. of eq' (4.21) ; i=1,N ; and, 

Wn)  
Qb(n) 

Q(n) 

q1,1(n)  

(12,1(n)  

(13,1(n)  

(IN,l(n)  

Therefore, starting from first time step. [X] can be obtained solving eq. 

(4.22) for each time step in succession. Knowing q
1 1

(n), q
2 

(n), q
3 1

(n), 
, 

—(IN,l(n); drawdowns in the well can be obtained using either eq. (4.2) or (4.5). 

Drawdowns in the first and second layer can be computed using eqs. (4.15) & (4.16) 

respectively. 

16 



5.0 RESULTS 

A computer code in Fortran was developed which uses the methodology presented 

in chapter 4 to compute the transient drawdown in the well as well as in the aquifer 

along with the well-contribution and aquifer contribution, when a partially 

penetrating large diameter well is pumped at a constant rate. The results presented 

herein are for the following range of variables. 

Diameter of well = 2.0 m and 4.0 m 

Hydraulic conductivity of the aquifer = 5.0 m/d 

Storage coefficient of the aquifer = 1.0x10 

Partial penetration = 0.25, 0.5, and 1.0 

Total thickness of the aquifer = 20.0 m 

Pumped discharge = 120.0 m3/d 

Variations of sw(t) with time is shown in fig. 5.1 for different penetrations 

for rw=1.0 m. The figure shows that at a particular time drawdown in the well 

decreases as the well-penetration increases. Fig. 5.2 shows the temporal variations of 

drawdown for different penetration for rw=2.0 m. It can be concluded from fig 5.1 & 

5.2 that the drawdown decreases with increase in depth of penetration. Fig. 5.3 & 5.4 

show that the temporal variations of Qa  for rw  =1.0m and 2.0m respectively. These 

figures show that Qa  increases with time for fixed value of rw  ; and decreases with 

increase in rw  at all time. Variation of Qb with time for different penetrations and 

different rw  is shown in figs. 5.5 & 5.6. 

17 
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6.0 CONCLUSION 

A simple methodology has been developed using .Duhamel's principle for modelling 

the transient flow towards partially penetrating large diameter well (when the well is 

pumped at a constant rate) accounting for the flow through the bottom of the well. 

A computer code in Fortran has been developed for the same which can be used to 

find the i) drawdown in the well as well as in the aquifer ii) well-storage and 

aquifer-storage contribution to the pumped discharge on account of pumping a partially 

penetrating large diameter well at a constant rate. 
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