
TR (BR) II I 

SOIL MOISTURE SIMULATION 

BY IMPROVED NUMERICAL METHOD 

It 

otret 

al % va gave 

NATIONAL INSTITUTE OF HYDROLOGY 
JAL VIGYAN BHAWAN 

ROORKEE - 247 667 U.P. 
INDIA 

1993-94 



PREFACE 

A very large fraction of the water falling as rain on the 

land surfaces of the earth or applied irrigation water moves 

through unsaturated soil during the subsequent processes of 

infiltration, drainage, evaporation, and the absorption of 

soil-water by plant roots. The water movements in the unsaturated 

zone, together with the water holding capacity of this zone, are 

very important for the water demand of the vegetation, as well as 

for the recharge of the ground water storage. A fair description 

of the flow in the unsaturated zone is also crucial for 

predictions of the movement of pollutants into ground water 

aquifers. 

This report entitled 'Soil Moisture Simulation by Improved 

Numerical Method' is a part of the research activities of 'Ground 

Water Assessment' division of the Institute. The purpose of this 

study is to develop a soil moisture simulation model using an 

improved numerical method. The study has been carried out by 

Mr. Chandra Prakash Kumar, Scientist 'C' under the guidance of 

Dr. G. C. Mishra, Scientist 'F'. 

Ae9A(...---" 
(S. M. SETH(  

Director 
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ABSTRACT 

The theori for transient isothermal flow of water into 

nonswelling unsaturated soil is well understood and has been 

developed to a large extent in terms of solutions of the 

non-linear Richards equation. In the field, the description of 

infiltration is highly complicated since the initial and boundary 

conditions are usually not constant while the soil characteristics 

may vary with time and space. In view of this, most efforts in 

recent past, have been concentrated on seeking numerical 

solutions. 

There exist quite a variety of finite difference solutions 

employing different forms of the non-linear Richards equation and 

different ways of discretization, the most common being explicit, 

implicit, and Crank-Nicolson approximation. The explicit 

approximation is derived by replacing the derivatives by their 

finite difference analog at the j time level. The implicit scheme 

replaces the derivatives by their finite difference analog at the 

(j+1) time level. The Crank-Nicolson approximation averages the 

derivatives at the j and (j+1) time levels to obtain an 

approximation at the (j+1/2) level implying that 50 % weightages 

are assigned to each of the derivatives at the j and (j+1) time 

levels. 

The purpose of this study is to develop a numerical model 

to simulate the soil moisture profile in an initially unsaturated 

soil during infiltration. A model has been formulated for finite 

difference solution of the non-linear Richards equation 
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applicable to transient, one-dimensional water flow through the 

unsaturated porous medium. The modification of explicit, implicit, 

and Crank-Nicolson schemes has been examined by varying the 

weightages assigned to the derivatives at the j and (j+1) time 

levels and comparing the simulated soil moisture profiles with the 

quasi-analytical solution of Philip. 
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1.0 INTRODUCTION 

Most of the processes involving soil-water interactions in 

the field, and particularly the flow of water in the rooting zone 

of most crop plants, occur while the soil is in an unsaturated 

condition. Unsaturated flow processes are in general complicated 

and difficult to describe quantitatively, since they often entail 

changes in the state and content of soil water during flow. Such 

changes involve complex relations among the variable soil wetness, 

suction, and conductivity, whose inter-relations may be further 

complicated by hysteresis. The formulation and solution of 

unsaturated flow problems very often require the use of indirect 

methods of analysis, based on approximations or numerical 

techniques. For this reason, the development of rigorous 

theoretical and experimental methods for treating these problems 

was rather late in coming. In recent decades, however, unsaturated 

flow has become one of the most important and active topics of 

research and this research has resulted in significant theoretical 

and practical advances. 

Richards (1931) presented the differential equation for 

soil water flow using an analogy to heat flow in porous media. Up 

to now this equation is used as the basic mathematical expression 

that underlies unsaturated flow phenomena. Soil water flow, 

however, is highly non-linear, as both the hydraulic conductivity 

and the soil water pressure head depend on the soil water content. 

Exact analytical solutions are only possible for simplified flow 

cases under a number of restrictive assumptions. Numerical 

solution of the flow equation on the other hand offers a powerful 

tool in approximating the real nature of the unsaturated zone for 

a wide variety of soil systems and external conditions. 
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The partial differential flow equation can be interpreted 

numerically by a finite difference, a finite element or a boundary 

element technique. Then a discretization scheme is applied for a 

system of nodal points that is superimposed on the soil depth-time 

region under consideration. Implementing the appropriate initial 

and boundary conditions then leads to a set of (linear) algebraic 

equations that can be solved by different methods. The operation 

by means of such a mathematical model is termed simulation, while 

the model is called simulation model. 

The output of a simulation model can include such variables 

as pressure head, moisture content and flux as a function of soil 

depth and time. However, most frequently one calculates the terms 

of the water balance, i.e. infiltration, actual evaporation, 

actual transpiration, change in soil water storage and the net 

flux through the region boundary. 

The main purpose of using dynamic simulation models is to 

assess the effects of water management measures such as 

irrigation, drainage, soil improvement and regional water supply 

plans, on the terms of the water balance of agricultural as well 

as nature conservation areas. Through the water balance terms one 

is generally able to evaluate effects of water management ori e.g. 

crop yield and agricultural income. Transport of solutes is 

another aspect, which is directly related to the simulation of 

unsaturated water flow, i.e. the evaluation of pollution of the 

ground water reservoir, salinization, etc. 

The yield of a crop well supplied with nutrients is 

directly related to its water use i.e. to its transpiration. The 

higher the water use, the higher the yield. Hence simulation of 

different irrigation regimes by a soil water balance model that 

has been combined with a crop growth model enables one to find the 
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optimum regime. In such a case the crop and soil system should 

interact with each other, i.e. crop development with time should 

have a feedback with calculated actual water use and production 

rates. 

The classical Richards-flow theory, upon which most 

simulation models are based, holds for stable flow conditions 

only. Yet instability of flow has been observed under a wide  

variety of circumstances such as abrupt and gradual increases of 

hydraulic conductivity with depth, compression of air ahead of the 

wetting front and water repellency of the solid phase. Another 

example of non-Richards type of flow is the preferential flow 

through non-capillary macropores. With classical flow theories one 

may then underestimate the velocity and depth of water/solute 

transport. 

In the present study, a numerical model has been developed 

to simulate the soil moisture profile in an initially unsaturated 

soil during infiltration. The results are compared with the 

quasi-analytical solution of Philip (1957) for various sets of 

weightages assigned to the derivatives at the j and (j+1) time 

levels in the finite difference solution of the non-linear 

Richards equation. 
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2.0 REVIEW 

2.1 General 

Modelling infiltration in soils has been approached in the 

past in two main ways. In the first approach, hydrologists have 

recognized the difficulties aFsociated with the solution of 

physically-based unsaturated flow equations and have opted for a 

large variety of empirical expressions with parameters to 

calibrate in optimization procedures. This approach, which has 

produced acceptable results for surface hydrologic computations, 

has not generated much understanding on the phenomenon of 

infiltration and distribution of water in unsaturated soils. In 

the second approach, it has been attempted to produce solutions to 

physically-based equations describing horizontal or vertical 

infiltration in soils. Several quasi-analytical solutions of the 

non-linear unsaturated flow equation have been reported in the 

literature. Other solutions use a numerical algorithm to implement 

in a computer. 

2.2 Analogue Simulation Models 

A hydrological simulation model is defined as "each system 

that can duplicate the response of a hydrological system". 

Simulation models which resemble the real world most closely are 

physical models (scale models) like for example sand tanks. 

Analogue models are based on the similarity between the 

relations describing water dynamics and those describing physical 

phenomena such as electrical flow. Analogue models haNe the 

advantage of continuous simulation and they give a good 
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approximation of the exact solution provided that the proper scale 

factors or transform functions are used. The main disadvantage is 

the time-consuming construction and operation. At this moment 

analogue simulation of water flow in the unsaturated zone is 

rarely applied. However, in combination with digital computers 

(hybrid models) most of the drawbacks can be overcome. 

2.3 Mathematical Models 

The dynamics of soil water is cast in the form of 

mathematical expressions that describe the hydrological relations 

within the system. The governing equations define a mathematical 

model. The entire model has usually the form of a set of partial 

differential equations, together with auxiliary conditions. The 

auxiliary conditions must describe the system's geometry, the 

system parameters, the boundary conditions and, in case of 

transient flow, also the initial conditions. Operations with such 

a mathematical model are called simulation. 

If the governing equations and auxiliary conditions are 

simple, an exact analytical solution may be found. Otherwise, a 

numerical approximation is applicable. The numerical simulation 

models are by far the most applied ones. 

2.3.1 Analytical approach 

The relationships that govern the flow of water in 

unsaturated soil are quasilinear equations of the parabolic type. 

Since the coefficients in these equations are functions of the 

dependent variables, exact analytical solutions for specific 

boundary conditions are extremely difficult to obtain. 
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Analytical methods to solve the non-linear governing 

equations search for the exact solution in terms of analytical 

functions. Such an exact solution, if it exists, requires 

transformation, separation of variables, and usually a series of 

error functions. 

The commonly used Boltzman transformation reduces the 

partial differential equations to ordinary differential equations. 

The Laplace transformation results in removing the time variable. 

The solution of an equation modified in this way yields a 

dependent variable as a function of the space variables. The 

non-linear mass conservation equation can be analytically solved 

only using various types of relaxation techniques such as 

linearization, quasilinearization and transformation to steady 

state. 

The basic equation that describes one-dimensional vertical 

water movement in isotropic nonswelling soils with no 

consideration of sinks/sources can be derived by combining Darcy's 

law and the equation of continuity as 

de a eh 
= [ K(e) ( - 1 ) ...(2.1) 

where e is soil moisture content, t is time, me) is the hydraulic 

conductivity, h is the soil water pressure head and z is the 

gravitational head considered positive in downward direction. By 

introducing the soil water diffusivity we) = me)/c(e), equation 

(2.1) can be written as : 

de a de OK(e) 
ai = 10; E D(9)  az ' Oz ...(2.2) 
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The following simplifications can be introduced to find 

analytical solutions : K is an analytical function of e or h; 

hysteresis is neglected; the medium is homogeneous and isotropic; 

the flow is considered to be stationary or a succession of 

steady-state situations (quasistationary approach); the gravity 

force is neglected. 

The first two assumptions linked with the third one have 

resulted in a great number of analytical solutions. The gravity 

force is often neglected in describing the infiltration process in 

originally dry soil, resulting in analytical solutions as derived 

by e.g. Philip (1957, 1958). 

2.3.2 Numerical approach 

With the advance of digital computers, emphasis has shifted 

drastically from the classical approach of analytical solutions to 

the rapidly developing field of numerical analysis. At present, 

numerical approximations are possible for complex, compressible, 

nonhomogeneous and anisotropic flow regions having various 

boundary configurations. 

Numerical methods are based on subdividing the flow region 

into finite segments bounded and represented by a series of nodal 

points at which a solution is obtained. This solution depends on 

the solutions of the surrounding segments and on an appropriate 

set of auxiliary conditions. 

In recent years a number of numerical methods have been 

introduced. The methods most appropriate to the problem of soil 

water dynamics are finite difference method, finite element method 

and boundary element method. The finite difference method has been 

discussed below. 
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Finite difference methods 

Finite difference methods (Remson et al., 1971), either 

explicit or implicit, belong to the most frequently used 

techniques in modelling unsaturated flow conditions. The most 

simple type of finite differencing, the explicit one, orders the 

differencing operators in such a manner that the resulting 

finite difference equation contains only one unknown, and 

consequently, may be solved simply and directly. The explicit 

method is computationally simple but it has one serious drawback. 

In ordei to attain reasonable accuracy, the length of the interval 

in space must be kept small. To get a stable solution, the time 

step has to be small compared with the space interval. Thus it is 

necessary to have a large number of time steps when using the 

simple explicit method. 

Implicit solution methods generally use much larger time 

steps than explicit ones, but their stability depends upon the 

degree of nonlinearity of the differential equation. There are a 

great number of methods to solve an implicit set of algebraic 

equations, such as linearization, predictor-corrector or iteration 

methods. 

In dealing with unsaturated flow problems that involve more 

than one space dimension and a grid with many nodal points, it is 

often necessary to use a mixed scheme that relies on simultaneous 

displacements along one space dimension and on successive 

displacements along the remaining space dimensions. This leads to 

the method of successive over relaxation (SOR). In the of case 

isotropic conditions, faster convergence may be sometimes achieved 

by using the iterative alternating direction implicit procedure 

(ADIPIT). 
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maximizing the absolute flux. The minimum allowed 

the soil surface, h
lim 

(time dependent) can be 

pressure head at 

determined from 

The advantage of the finite difference method is its 

simplicity and efficiency in treating the time derivatives. On the 

other hand, the method is rather incapable to deal with complex 

geometries of flow regions. A slow convergence, a restriction to 

bilinear grids and difficulties in treating moving boundary 

conditions are other serious drawbacks of the method. 

2.4 Initial and Boundary Conditions 

Initial conditions must be defined when transient soil 

water flow is modelled. Usually values of matric head or soil 

water content at each nodal point within the soil profile are 

required. However, when these data are not available, water 

contents at field capacity or those in equilibrium with the ground 

water table might be considered as the initial ones. 

2.4.1 Upper boundary conditions 

While the potential evapotranspiration rate from a soil 

depends only on crop and atmospheric conditions, the actual flux 

through the soil surface and the plants is limited by the ability 

of the soil matrix to transport water. Similarly, if the potential 

rate of infiltration exceeds the infiltration capacity of the 

soil, part of the water runs off, since the actual flux through 

the top layer is limited by moisture conditions in the soil. 

Consequently, the exact boundary conditions at the soil surface 

can not be estimated a priori and solutions must be found by 

equilibrium conditions between soil water and atmbspheric vapour. 
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The possible effect of ponding has been neglected so far. 

In case of ponding, usually the height of the ponded water as a 

function of time is given. However, when the soil surface is at 

saturation then the problem is to define the depth in the soil 

profile where the transition from saturation to partial saturation 

Occurs. 

In most of the dynamic transient models, the surface nodal 

point is treated during the first iteration as a prescribed flux 

boundary and matric head h is computed. If hlim  5 h S 0, the upper 

boundary condition remains a flux boundary during the whole 

iteration. If not, the surface nodal point is treated as a 

prescribed pressure head in the following iteration. Then in case 

of infiltration, h = 0 and in case of evaporation h = h
lim

. The 

actual flux is then calculated explicitly and is subject to the 

condition that actual upward flux through the soil-air interface 

is less than or equal to potential evapotraneliration (time 

dependent). 

2.4.2 Lower boundary conditions 

At the lower boundary one can define three different types 

of conditions : (a) Dirichlet condition, the pressure head is 

specified; (b) Neumann condition, the flux is specified; and (c) 

Cauchy condition, the flux is a function of a dependent variable. 

The phreatic surface (place, where matric head is 

atmospheric) is usually taken as lower boundary of the unsaturated 

zone in the case where recorded water table fluctuations are known 

a priori. Then the flux through the bottom of the system can be 

calculated. In regions with a very deep ground water table, a 

Neumann type of boundary condition is used. 
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Dirichlet condition 

Easy recording 'of changes in phreatic surface in case of 

present ground water table is the main advantage •of specifying a 

metric head zero as the bottom boundary. A drawback is that with 

shallow ground water tables (less than 2 m below soil surface) the 

simulated effects of changes in phreatic surface are extremely 

sensitive to variations in the soil hydraulic conductivity. 

The nodal points in a soil profile usually have fixed 

positions and probably none of them will coincide with the water 

table level. The nodal point, where the matric head is prescribed, 

is often the one immediately beneath the phreatic level. When 

large fluxes across the lower boundary occur, an error is 

introduced by this approximation. 

Neumann condition 

A flux as lower boundary condition is usually .applied in 

cases where one can identify a no-flow boundary (e.g. an 

impermeable layer) or a free drainage case. In the latter case the 

flux is always directed downward and the gradient Oh/Oz = 1, 80 

the Darcian flux is equal to the hydraulic conductivity at the 

lower boundary. 

Cauchy condition 

This type of boundary condition is used when unsaturated 

flow models are combined with models for regional ground water 

flow or when the effects of surface water management are to be 
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simulated. Writing the lower boundary flux as function of the 

phreatic surface, which is in this case the dependent variable, 

one can incorporate relationships between the flux to/from the 

drainage system and the height of the phreatic surface. This 

flux-head relation can be obtained from drainage formulae or from 

regional ground water flow models. 

With the lower boundary conditions the connection with the 

saturated zone can be established. In this way effects of 

activities influencing the regional ground water system upon, for 

instance, crop evapotranspiration can be simulated. The coupling 

between the two systems is possible by considering the phreatic 

surface as an internal moving boundary with one-way or two-way 

relationships. When the Cauchy condition is linked with a 

one-dimensional vertical flow model, one can consider such a 

solution as quasi-two-dimensional, since both vertical and 

horizontal flow are calculated. 

2.5 Required Input Data 

Simulation of water dynamics in the unsaturated zones 

requires input data concerning the model parameters, the geometry 

of the system, the boundary conditions and, when simulating 

transient flow, initial conditions. With geometry parameters the 

dimensions of the problem domain are defined. With the physical 

parameters the physical properties of the system under 

consideration are described. With respect to the unsaturated zone 

it concerns the soil water characteristic, e(h), and the hydraulic 

conductivity, K(9). If root water uptake is also modelled, the 

parameters defining the relation between root water uptake and 

soil water status should be giver, together with crop 
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specifications. In case a functional flux-head relationship is 

used as lower boundary condition, the parameters describing the 

interaction between surface water and ground water and, if 

necessary, the vertical resistance of poorly permeable layers have 

to be supplied. 

2.6 Hysteresis 

Most simulation models ignore the effect of hysteresis. 

However, it has been recognized for a long time that hysteresis in 

the soil water retention curve influences the soil water movement, 

especially when frequent changes from wetting to drying occur. The 

hysteresis phenomenon does not affect the me) relation very much 
and is usually neglected. It may be noted that if me) functions 
are not taken as subject to hysteresis, they might be considered 

being dependent on temperature. 

The main reasons for hysteresis in the water retention 

curve are the complexity of the pore-space geometry, the presence 

of entrapped air, shrinking and swelling and thermal gradients. 

The first mathematical models of hysteresis were based on the 

so-called independent domain concept. The basic assumptions of 

this concept are (1) a difference in the water volume of each pore 

does not depend on metric head and (2) the pore space is built up 

of pores or domains with each pore size defined by two metric 

heads. Later on, models were developed by introducing a domain 

dependence factor. 

However, successful attempts to build the hysteresis 

problem into dynamic simulation transient flow models are still 

scarce. Some of the practical problems, e.g. low pressure/very 

frequent irrigation or significant shrinkage/swelling clearly 
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define a range of flow situations, where hysteresis can not be 

omitted. For the case when water retention is noticeably affected 

by heavy swelling/shrinking and water adsorption-desorption, the 

boundary hysteresis curves do not join even for the highest values 

of metric heads. Under such conditions all of the present 

hysteresis models still need adaptations. 

2.7 Preferential Flee 

Most simulation models for the unsaturated zone consider 

the soil to be isotropic and homogeneous. The fact that most soils 

are neither was recognized already in the 19th century. In field 

soils, transport of water is often heterogeneous with part of the 

infiltrating water travelling faster than the average wetting 

front. This has important consequences for simulating the field 

water balance and therefore on the calculation of crop water use, 

crop yield, solute transport and pollution of ground water and 

subsoil. In some soils, preferential flow occurs through large 

pores in an unsaturated soil matrix, a process known as bypass 

flow or shortcircuiting. In other soils, different flow rates vary 

more gradually, while matrix and preferential pathways can not be 

distinguished easily. 

Preferential flow of water through unsaturated soil can be 

caused by different mechanisms, one of them being the occurrence 

of noncapillary sized macropores. This type of macroporosity can 

be caused by shrinking and cracking of the soil, by plant roots, 

by soil fauna or by tillage operations. The occurrence of wetting 

front instability, as car--i by air entrapment ahead of the 

wetting front or by wate) -zpellency of the soil can also be 

viewed as an expression of preferential flow. Whatever the cause 
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of preferential flow, the result is that the basic partial 

differential equation describing flow within the soil matrix 

domain, needs adaptation. 

The partitioning of soil water over the soil matrix and 

macropores, and the fate of water flowing downward through the 

macropores is handled differently by the various models. The 

common principle, however, is essentially the two-domain concept. 

An important aspect of preferential flow is the interaction 

between water in the soil matrix and water inside the macropores. 

In some models, the total preferential flow is accumulated at the 

bottom of the macropores and is then added to the unsaturated zone 

at that depth. 

2.8 Spatial Variability and Scaling 

Most models for the unsaturated zone are one-dimensional. 

However, the problems which have to be modelled, are in general of 

local or regional nature. In that case, we face the problem of 

spatial variability. This phenomenon recently has attracted much 

attention in literature. The basic assumption is that the porous 

medium is regarded as a macroscopic continuum with properties •that 

are continuous functions of the space coordinates. A set of 

measured values is interpreted as a realization of a spatial 

stochastic function. The estimation of these functions may be very 

complicated. Also the application of geostatistics with 

regionalization of point simulations is of value. A proper 

application of the geostatistical approach may reveal field 

characteristics that are not apparent from conventional 

statistical analysis. 
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A phenomenon connected with regional application of 

one-dimensional simulation models is scaling. In principle, 

scaling is a technique of expressing the statistical 

variability in, for instance, the hydraulic conductivity in 

handsome relationships. By this simplification, the pattern of 

spatial variability is described by a set of scale factors, 

defined as the ratio between the characteristic phenomenon at the 

particular location and the corresponding phenomenon of a 

reference soil. 
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3.0 PROBLEM DEFINITION 

The one-dimensional problems of interest in subsurface 

hydrology are mainly non-linear and the auxiliary conditions of 

most natural systems are extremely complicated. For such  

situations, exact analytic solutions are not available and 

recourse must be made to the use of numerical methods of 

approximation for the solution of differential equations. Thus 

numerical methods are powerful tools for the solution of 

realistic mathematical models of complicated natural subsurface 

hydrologic systems. The methods most appropriate to the problem of 

soil water dynamics are finite difference method, finite element 

method and boundary element method. In the present study, finite 

difference method has been used. 

The basic idea of finite difference methods is to replace 

derivatives at each of a number of mesh points by ratios of the 

changes of appropriate variables over a small but finite interval. 

This reduces a continuous boundary-value problem to a set of 

algebraic equations. 

The 'explicit' approximation is derived by replacing the 

space derivative by its finite difference analog at the j time 

level. The time derivative is then replaced by an approximation 

between the j and (j+1) time levels. Applied at each mesh point, 

the approximation contains one unknown value of the dependent 

variable at the (j+1) time level and can be solved explicitly in 

terms of the three known values at the j time level. The finite 

difference computation must be convergent and stable to give a 

result that is in some sense close to the solution of the original 

problem. Explicit computations require many small time jumps and 

therefore implicit approximations are preferable. 
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The 'implicit' formulation is obtained by replacing the 

space derivative with its finite difference analog at the (j+1) 

time level. The time derivative is then replaced by a 

backward-difference approximation (relative to the j+1 time 

level). Thus, the approximation at each node involves three 

unknown values at the (j+1) level and one known value at the j 

time level. When applied at all nodes, the result is a system of 

simultaneous linear algebraic equations with unknowns at the (j+1) 

time level. With boundary conditions specified, the number of 

equations equals the number of unknowns, and the system can be 

solved to 'march' the solution forward one time step. The 

coefficients of these equations form a tridiagonal matrix and the 

system of equations is therefore easy to solve. 

The Crank-Nicolson approximation averages the space 

derivative at the j and (j+1) levels to obtain an approximation at 

the (j+1/2) level and the usual approximation for the time 

derivative over the interval from j to (j+i). The Crank-Nicolson 

approximation gives a system of equations for the boundary-value 

problem that retains the computationally advantageous tridiagonal 

form and has a small truncation error. 

The finite /difference methods make use of approximations. 

However, the resulting inaccuracies can be made negligibly small 

through proper use of the methods. Furthermore these errors in 

approximation are generally outweighed by the inaccuracies due to 

the uncertainties in the specification of subsurface hydrologic 

parameters. 

The objective of the present study is to develop a 

numerical model (finite difference scheme) for solving the 

non-linear partial differential equation (Richards equation) 

describing one-dimensional water flow through the unsaturated 
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porous medium and to examine the modification of explicit, 

implicit and Crank-Nicolson methods by varying the weightages 

assigned to the derivatives at the j and (j+1) time levels. The 

simulated soil moisture profiles at various times in a sandy soil 

have been compared with the soil moisture profiles obtained 

through quasi-analytical solution of Philip. The Philip's 

quasi-analytical solution was obtained by solving the Richards 

equation subject to condition of a constant pressure at the soil 

surface (Haverkamp et al., 1977). 
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4.0 METHODOLOGY 

4.1 General 

Due to the non-linearity of the equations describing the 

flow under unsaturated conditions, the solution in general 

requires numerical methods. Analytical solutions are known for 

special cases only. As the analytical methods are difficult to 

apply in most cases, numerical approximation methods are often 

utilized for solving differential equations. Among the available 

numerical methods, those employing finite differences are most 

frequently used. 

Finite difference methods are approximate in the sense that 

derivatives at a point are approximated by difference quotients 

over a small interval, but the solutions are not approximate in 

the sense of being crude estimates. Finite difference methods 

generally give solutions that are either as accurate as the data 

available or as accurate as necessary for the technical purposes 

for which the solutions are required. 

4.2 General Equation of Unsaturated Flow 

A proper physical description of water flow in the soil 

requires that three parameters be specified : flux, hydraulic 

gradient, and conductivity. Knowledge of any two of these allows 

the calculation of the third, according to Darcy's law. This law 

states that the flux equals the product of conductivity by the 

hydraulic gradient. Darcy's law has been found to apply for 

unsaturated as well as for saturated soils, but the pressure 

gradient at unsaturation becomes a suction gradient, and the 
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hydraulic conductivity is no longer constant, but a function of 

water content or suction. Since the conductivity depends on the 

number, sizes, and shapes of the conducting pores, its value is 

greatest when the soil is saturated, and decreases steeply when 

the soil water suction increases and the soil loses moisture. 

Darcy's law suffices to describe water flow under steady state 

conditions, but must be combined with the continuity equation to 

describe unsteady (transient state) flow. According to Darcy's 

law, for one-dimensional vertical flow, the volumetric flux q 

(cm
3
/cm

2
/h) can be written as 

0 q (h - z) 
dz 

dh or q =  
Oz 

(cm/h) 

(cm/h) ...(4.1) 

where K is the hydraulic conductivity (cm/h), h is the soil water 

pressure head (relati,a to the atmosphere) expressed in cm of 

water and z is the gravitational head (cm) considered positive in 

downward direction. 

In order to get a complete mathematical description for 

unsaturated flow, we apply the continuity principle (Law of 

Conservation of Matter) 

6,4  
5i - Oz (/h) ...(4.2) 

where e is soil moisture content expressed in cm3  /cm
3 
 and t is 

time in hours. 

Substitution of equation (4.1) into equation (4.2) yields 

the partial differential equation 
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de eh ai b;  ( K (K- - 1) ] ...(4.3) 

Equation (4.3) is a second order, parabolic type of partial 

differential equation (known as Richards equation) which is 

non-linear because of the dependency of K and h on e (linearity 

means that the coefficients in a differential equation are only 

functions of the independent variables z and t). To avoid the 

problem of the two dependent variables e and h, the derivative of 

S with respect to h can be introduced, which is known ,as the 

specific water capacity C 

de C = (/cm) ...(4.4) 
dh 

In equation (4.4) a normal instead of a partial derivative 

notation is used, because h is considered here as a single value 

function of 9 (no hysteresis). Writing 

as _ de eth 
ai dh at 

...(4.6) 

and substituting equation (4.4) into equation (4.3) yields 

ah O 
C(h) = [ K(h) (

h
-- - 1) ] 

at. Oz Oz 
...(4.6) 

In equation (4.6) the coefficients C and K are functions of 

the dependent variable h, but not functions of the derivatives 

ah/at and Oh/dz. Written in this form, equation (4.6) provides 

the basis for predicting soil water movement in layered soils of 

which each layer may have different physical properties. 
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4.3 Initial and Boundary Conditions 

To obtain a solution for the one-dimensional vertical flow 

equation, equation (4.6) must be supplemented by appropriate 

initial and boundary conditions. 

As initial condition (at t = 0) the pressure head is 

specified as a function of the depth z 

h (z, t = 0) = h0 ...(4.7) 

As hysteresis is not considered in this study, this 

condition is equivalent to 

e (z, t = 0) = e ...(4.8) 

One can then easily obtain the value of h (and vice versa) 

from the expression : h = f(9). 

To describe the boundary conditions one can distinguish 

between three types : 

(a) Dirichlet condition : specification of thc dependent 

variable, the pressure head 

}  h (z = L, t) = h
1 

...(4.9) 

These conditions are equivalent to 

S (z = o, t) = e 

. e (z = L, t) = e
1 

...(4.10) 
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Neumann condition : specification of the derivative of the 

pressure head. For the soil water problem this condition 

means a specification of the flow through the boundaries 

a 
q(t) = - K(h) (

h
-- - 1) 
az 

... (4.11) 

'Mixed' condition, a combination of the first two types. 

In particular this can specify h at the lower boundary and 

at the upper boundary. 

For the present study, initial condition has been defined 

by equation (4.8) as 

(z, t = 0) = 0.10 ...(4.12) 

and the upper boundary condition by equation (4.10) as 

(z = o, t) = 0.267 ...(4.13) 

4.4 Soil Moisture Characteristics 

For the present study, functional relations, as reported by 

for characterizing the hydraulic 

a soil, were used. They compared six models, 

ways of discretization of the non-linear 

infiltration equation in terms of execution time, accuracy, and 

programming considerations. The models were tested by comparing 

water content profiles calculated at given times by each of the 

model with results obtained from an infiltration experiment 

carried out in the laboratory. All models yielded excellent 

agreement with water content profiles measured at various times. 
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The infiltration experiments were done in the laboratory 

using a plexiglass column, 93.5 cm long and 6 cm inside diameter 

uniformly packed with sand to a bulk density of 1.66 gm/cm
3 
 . The 

column was equipped with tensiometers at depths of 7, 22, 37, 52, 

67 and 82 cm below the soil surface. Each tensiometer had its own 

pressure transducer.. The changes of water content at different 

depths were obtained by gamma ray attenuation using a source of 

Americium-241. A constant water pressure (e = 0.10) was maintained 

at the lower end of the column, a constant flux (13.69 cm/h) was 

imposed at the soil surface (z = 0) and initial condition as e = 

0.10 throughout the depth. The hydraulic conductivity and water 

content relationship of the soil was obtained by analysis of the 

water content and water pressure profiles during transient flow. 

The soil water pressure and water content relationship was 

obtained at each tensiometer depth by correlating tensiometer 

readings and water content measurements during the experiments. 

The following analytical expressions, obtained by a least square 

fit through all data points were chosen for characterizing the 

soil : 

where, 

A 
K = K  

A + 111101 ; 

K
s 

• 34 cm/h, 
6 

A = 1.175 x10 , 

131 = 4.74. 

...(4.14) 

and 9 - 
a ( e

s 
-e  r 

) 
.d.(4.15) + 9

r 
; 

a + 
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where, es = 0.287, 

er = 0.075, 
6 

a = 1.611 x 10 , 

132 = 3.96. 

Subscript s refers to saturation, i.e. the value of e for 

which h = 0, and the subscript r to residual water content. 

Figure 1 present the relationships between the soil water 

pressure h, the water content e and the hydraulic conductivity K 

for the above soil used in this study. 

4.5 Finite Difference Approximation 

Let the entire flow domain be divided into a grid of equal 

intervals Az and the time domain be similarly divided into 

intervals At. The partial differential equation (4.6) can be 

approximated by a finite difference equation replacing at and az 

by At and Az respectively in the following way : 

hj+1 - h
j 

1 h
j+a 

- h
j+a 

[ 
Kj+a 

i 
C
j+a i+1  

i+1/2 
At Az Az 

1) 

h
j+a 

- h
j+a 

- Kj" ( 
i-1  1) I 

i-1/2 Az 

...(4.16) 
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where i and j are the indexes of space and time respectively. 'a' 

is a weighting factor (0 5 a 5 1) introduced in such a manner that 

by putting a = 0, it is transformed into explicit scheme, a = 0.5 

into Crank-Nicolson scheme and e = 1 into implicit scheme. 

Therefore, 

h,
+a  

= (1 - a) h
j 

+ a h'?'1 
j 

 
1 1 

j+a 
= (1 - a) h

j 
+ a h

j+1 
h
1+1 1+1 i+1 

h.
+a  

= (1 - a) hh'? + a h
j+1 j 

 
1-1 1-1 i-1 

...(4.17 a) 

..14.17 b) 

...(4.17 c) 

+a 
The values of C.

j+a  , Kj+a 
1+1/2 

and K
j 

can be approximated by 
1 

j+a j+1 
C. = F = (1 - a) C. + a C 
1 1 1 

j+a 
+ a K

j+1 
= F = (1 - a) Kj  K

i+1/2 2 i+1/2 1+1/2 

...(4.18 a) 

j j j+1 j+1 
= (1 - a) 4 ( KT K 

1
. ) + a 4 ( K. K

i+1 
) 

1 +1 1 

...(4.18 b) 

j+a 3 j+1 
= F = (1 - a) K. + a 

1-1/2 3 1-1/2 
Ki-1/2  

j+1 j+1 
= (1 - a) 4 ( Kji  ) + a 4 ( k ) 1-1 i 

...(4.18 c) 

Different methods of weighting interblock hydraulic 

conductivity values for modelling one-dimensional water transfer 

in homogeneous unsaturated soil were tested by Haverkamp and 
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Vauclin (1979) for their influence upon the accuracy of the finite 

difference solution. The only method that well simulated their 

experimental observations was the geometric mean. This approach 

has therefore been adopted in the equations (4.18 b) and (4.18 c). 

Substitution of equations (4.17) and (4.18) in equation 

(4.16) yields the following linear algebraic equation valid for 

each nodal point : 

At 
 h

j+1 At At  1"
h
j+1 

- a F + F +aF  
3 (Az)2 i-1 1 2 3 

(Az)
2 
+ a F 

(Az)
2 i 

a F At  ] 0 
1+1
+1 

2 
(Az)

2 
At  

h 
a) F3 (Az) i-12 I 

 

At At hj 
F - (1 - a) F (1 a) F (Az)

2 1 2 3 
(Az)

2 i 

a) F 
At  } hj 

1
At 

+ (F - F2) 
  2 3 Az 

(Az)
2 i+ 

...(4.19) 

When equation (4.19) is applied at all nodes, the result is 

a system of simultaneous linear algebraic equations with a 

tridiagonal coefficient matrix with zero elements outside the 

diagonals and unknown values of h. In solving this system of 

equations, a so-called direct method was used by applying a 

tridiagonal algorithm of the kind discussed by Remson et al. 

(1971). 
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4.6 Soil Moisture Simulation 

Due to the fact that the hydraulic conductivity, K(h) and 

specific water capacity, C(h) at the end of each time step are 

unknown, an iterative process was used. In the iteration method, 

hj  is replaced by hj(n), where n is an iteration index. For the 

first, iteration, h.(0) is set equal to h.. The resulting linear 

equations are then solved for hj+1
i , and h.(1) is obtained from 

this solution. The parameters C(h) and K(h) are adjusted 

corresponding to this estimate of h
i and the equations are solved 

again to find h.(2), and the procedure is continued. The iterative 

procedure is generally terminated when two successive values of hj  

are 'close' to each other e.g. 

nnode 
j a 2 r [ h 

i (n) - h (n - 1) l < 0.0001 ...(4.20) i  
i = 1 

The iteration method is time-consuming, but gives better 

estimates. 

A specific solution of Richards equation was obtained by 

Philip (1957) in the case of infiltration in an homogeneous 

semi-infinite column satisfying the boundary conditions : 

< 0 z 0 a = e  

o z = 0 a = a 
1 ...(4.21 a) 

In a later paper (Philip, 1958), the Richards equation was 

solved for the conditions : 

< 0 z 11* 0 h = h 
0 

> 0 z = 0 h = h
u 

} ...(4.21 b) 
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where h
u 
could take positive values corresponding to an 

infiltration experiment with submersion. Philip's method led to a 

solution in the form of a power series in t1'2. Since the series 

converges only for finite t, the solution becomes unreliable as t 

tends to infinity; the t-range of convergence is depending upon 

the characteristics of soil and the initial and boundary 

conditions. 

In the present study, soil moisture profiles were simulated 

at various times for values of weighting factor 'a' ranging from 0 

to 1 (with an increment of 0.05) and compared with the 

quasi-analytical solution of Philip by computing an error term 

over the zone of interest, as follows : 

Error Term 

i=m+n 
e1(simulated) - e1

(Philip) 2 ...(4.22) 

i=m 

The values of m and n depend upon the advancement of 

water front at various times. 

The computer code, for discretization scheme used in the 

model and simulation of soil moisture profiles as per the 

procedure described above, has been written in FORTRAN and 

presented in Appendix - I. 
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5.0 RESULTS 

The numerical model described in section 4.5 was tested for 

different values of weighting factor 'a' by comparing water 

content profiles calculated at given times with results obtained 

from quasi-analytical solution of Philip. Using the functional 

relations given in equations (4.14) and (4.15) for characterizing 

the hydraulic properties of the soil, the water content profiles 

were determined subject to the following conditions : 

t < 0 

t o 

3 3 
z 0 e o.lo cm /cm 

3 3 
z = 0 e

u =
0.267 cm /cm 

} ...(5.1) 

The numerical computations were made with a depth interval 

tz = 1 cm, the total simulation period being 0.8 hour. It was 

found by trial and error that the numerical scheme is stable for 

time step Lit = 0.4 second in case of a = 0 (i.e. explicit scheme) 

and At = 5 seconds in case of a = 1 (i.e. implicit scheme). In 

order to examine the effect of weighting factor 'a' on the 

simulated water content profiles, the time step was kept constant 

as 0.4 second for all simulations. 

Haverkamp et al. (1977) has reported the infiltration 

profiles at various times for infiltration in the sand (under 

consideration) obtained by quasi-analytical solution of Philip. 

Numerical data of Philip's solution are given in table 1. For 

'limited times' Philip's method gives at each time, t the depth, 

zWidlichreachesagivenwatercontent,e.according to; 
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3/2 
z(t,e ) = 0 A t

1/2 
+ N (e.)t + w(.) 

n/2 n/2 
+ w(e) t + + f (9.) t 

n 3. 

Table 1 : Water Content Profiles determined with the Solution of 

Philip 

Water Content 

(9) 

Depth (z) 

t = 0.1 hour t = 0.2 hour t = 0.8 hour 

0.2523 9.4 17.7 65.2 
0.2356 12.0 20.7 69.2 
0.2189 13.2 22.1 71.1 
0.2021 14.1 23.1 72.3 
0.1854 14.8 23.8 73.2 
0.1686 15.3 24.5 74.0 
0.1519 15.9 25.2 74.8 
0.1351 16.5 25.9 75.7 
0.1184 17.3 26.8 76.8 
0.1016 19.5 29.5 78.6 

The numerical model, on the other hand, calculates 9 for a 

given value of z. As a result, interpolations are necessary, at a 

given stage of calculations to compare the results. The prediction 

of the water content profiles using Philip's method is only valid 

within the domain of convergence of the series (equation 5.2). To 

calculate the time for which the series would converge, Philip 

(1969, pp. 250) introduced a characteristic time of infiltration, 

t
gray

, as : 

t
gray   1

2 
K
u
- K

O 
...(5.3) 
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where, K
u 

is the hydraulic conductivity corresponding with eu and 

S is the sorptivity, defined as 

eu 
0 de ...(5.4) 

For the sand material, S was found to be 5.441 cm/h
1/2

, and 

the characteristic time was t = 0.16 hour. Consequently for 
gray 

t S 0.2 hour, the water content profile could be calculated with 

equation (5.2). In our calculations the series was limited to four 

terms. To use more terms of the series would, according to Philip, 

'extend the range of accurate results only by small amounts quite 

disproportionate to the extra labour involved'. For t 0.3 hour, 

the profiles were calculated by an approximation of the 'infinite' 

profile, as proposed by Philip (1957, pp. 444). The power series 

solution (equation 5.2) and the asymptotic solution of the profile 

at infinity are expected to overlap. 

Table 2 present the 'error term' for simulated water 

content profiles for different values of 'weighting factor' as 

compared with the quasi-analytical solution of Philip at t = 0.1 

hour, 0.2 hour and 0.8 hour. The variation of error term with 

respect to weighting factor has also been presented in figures 2, 

3 and 4 for t = 0.1 hour, 0.2 hour and 0.8 hour respectively. It 

can be observed that the error term increases with time 

irrespective to the value of 'a'. Secondly, the error term 

continuously decreases as the weighting factor increases from 0 to 

1 for all the three times of simulations. It implies that the 

implicit scheme (a = 1) gives better agreement with infiltration 

profiles calculated with Philip's method instead of any other 

value of 'a' including a = 0 (explicit scheme) and a = 0.5 

(Crank-Nicolson scheme). 
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Table 2 : Error Term for Simulated Water Content Profiles 

S.No. Weighting 

Factor 
(a) 

Error Term 

t = 0.1 hour t = 0.2 hour t = 0.8 hour 

1 0.00 0.000256764 0.000390260 0.003107394 

2 0.05 0.000255853 0.000389305 0.003101068 

3 0.10 0.000255068 0.000388679 0.003101077 

4 0.15 0.000254360 0.000388216 0.003103563 

5 0.20 0.00025356e 0.000387457 0.003100830 

6 0.25 0.000252738 0.000386601 0.003095082 

7 0.30 0.000252007 0.000385968 0.003093199 

8 0.35 0.000251332 0.000385481 0.003093848 

9 0.40 0.000250595 0.000384782 0.003091039 

10 0.45 0.000249918 0.000384144 0.003087688 

11 0.50 0.000249275 0.000383572 0.003086450 

12 0.55 0.000248619 C.000382972 0.003083668 

13 0.60 0.000247968 000382360 0.003081211 

14 0.65 0.000247388 000381849 0.003079181 

15 0.70 0.000246836 0.000381409 0.003078590 

16 0.75 0.000246251 0.000380848 0.003075449 

17 0.80 0.000245728 0.000380369 0.003073623 

18 0.85 0.000245203 0.000379933 0.003072237 

19 0.90 0.000244702 0.000379518 0.003071164 

20 0.95 0.000244258 0.000379155 0.003070244 

21 1.00 0.000243760 0.000378676 0.003068143 
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Tables 3, 4 and 5 present the comparison between water 

content profiles determined with the solution of Philip and the 

simulated water content profiles for explicit scheme (a = 0), 

Crank-Nicolson scheme (a = 0.5) and implicit scheme (a = 1) at 

t = 0.1 hour, 0.2 hour and 0.8 hour respectively. In all cases, 

the rate of advance of the water front is particularly well 

described. Some discrepancies are found between numerical water 

content profiles and quasi-analytical solution in the low water 

content domain. However, all the numerical schemes yield 

comparable results which are not significantly different from the 

quasi-analytical solution. The input data to the model and output 

for implicit scheme (a = 1) are given in Appendix - II and 

Appendix - III respectively. 

Table 3 : Comparison between Water Content Profiles at t=0.1 hour 

Depth 
(z) Philip 

Water Content (e) 

Explicit 
Scheme 
(a = 0)  

Crank-Nicolson 
Scheme 

(a = 0.5) 

Implicit 
Scheme 
(a = 1) 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

0.2484 
0.2420 
0.2356 
0.2217 
0.2040 
0.1787 
0.1491 
0.1247 
0.1130 
0.1054  

0.247574 
0.241063 
0.231798 
0.218237 
0.198274 
0.170837 
0.140986 
0.118997 
0.107607 
0.102811  

0.247565 
0.241051 
0.231784 
0.218227 
0.198285 
0.170915 
0.141156 
0.119176 
0.107727 
0.102876  

0.247550 
0.241032 
0.231760 
0.218201 
0.198273 
0.170961 
0.141294 
0.119335 
0.107839 
0.102937 
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Water Content (0) 

(z) Philip Explicit 
Scheme 
(a = 0) 

Crank-Nicolson 
Scheme 

(a = 0.5) 

Implicit 
Scheme 
(a = 1) 

18 0.2506 0.247249 0.247241 0.247230 
19 0.2451 0.242231 0.242223 0.242209 
20 0.2395 0.235506 0.235496 0.235480 
21 0.2320 0.226299 0.226291 0.226274 
22 0.2201 0.213518 0.213516 0.213502 
23 0.2038 0,195913 0.195931 0.195932 
24 0.1806 0.173123 0.173185 0.173225 
25 0.1567 0.148020 0.148140 0.148237 
26 0.1332 0.126794 0.126937 0.127064 
27 0.1172 0.113176 0.113294 0.113403 
28 0.1109 0.106002 0.106079 0.106152 
29 0.1047 0.102619 0.102664 0.102706 

Dept 

Table 4 : Comparison between Water Content Profiles at t=0.2 hour 

Table 5 : Comparison between Water Content Profiles at t=0.8 hour 

Depth 
(z) 

Water Content (e) 

Philip Explicit 
Scheme 
(a = 0) 

Crank-Nicolson 
Scheme 

(a = 0.5) 

Implicit 
Scheme 
(a = 1) 

66 0.2490 0.246294 0.246286 0.246276 
67 0.2448 0.241825 0.241816 0.241805 
68 0.2406 0.236003 0.235994 0.235981 
69 0.2364 0.228291 0.228282 0.228270 
70 0.2286 0.217948 0.217944 0.217934 
71 0.2198 0.204080 0.204087 0.204086 
72 0.2063 0.186024 0.186056 0.186077 
73 0.1891 0.164453 0.164525 0.164586 
74 0.1686 0.142607 0.142719 0.142819 
75 0.1482 0.124907 0.125027 0.125139 
76 0.1305 0.113293 0.113390 0.113484 
77 0.1165 0.106719 0.106786 0.106851 
78 0.1072 0.103300 0.103341 0.103382 

40 



Implicit methods are preferable in view of their stability, 

even for fairly large time steps thus keeping computer costs 'low, 

and their flexibility for solving flow problems when saturated and 

unsaturated zones have to be considered simultaneously, since for 

C = 0 one simply has to solve the Laplace's equation. 
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6.0 CONCLUSIONS 

A numerical model has been developed for finite difference 

solution of the non-linear Richards equation describing transient, 

one-dimensional water flow through the unsaturated porous medium. 

The solution is applicable to homogeneous and isotropic soils in 

which the functional relationships between hydraulic conductivity, 

moisture content and soil moisture tension do not show hysteresis 

properties. 

A modification in the explicit, implicit and Crank-Nicolson 

schemes has been incorporated by introducing a weighting factor. 

The simulated water content profiles were compared with those 

computed through quasi-analytical solution of Philip for the 

condition of a constant pressure at the soil surface. The implicit 

scheme was found to give better agreement between the two. 

The closer agreement between water content distributions 

obtained with the model and Philip's quasi-analytical solution 

indicate that numerical model is a reliable tool for predicting 

infiltration of water into soil. Considering computer time and 

stability problems, the implicit finite difference approximation 

has the widest range of applicability for predicting water 

movement in soil with both saturated and non-saturated egions. 
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APPENDIX - I 

SOIL MOISTURE SIMULATION BY IMPROVED NUMERICAL METHOD 

DIMENSION SUB(90), SUP(90), DIAG(90), B(90) 
DIMENSION H(90,2), CCC(90,2) 
DIMENSION THETA(90,2), HYDCON(90,2) 
DIMENSION PHIL1(10), PHIL2(12), PHIL3(13) 
OPEN(UNIT=1,FILE='IMPROV.DAT',STATUS&OLD') 
OPEN(UNIT=2,FILE='IMPROV.OUT',STATUS='NEW) 

J REFERS TO TIME 
I REFERS TO DEPTH 

= DEPTH (CM), ORIENTED POSITIVELY DOWNWARD 
A = WEIGHTAGE ASSIGNED TO THE SPACE DERIVATIVES 

AT THE (j+l)th TIME LEVEL 
(I-A) = WEIGHTAGE ASSIGNED TO THE SPACE DERIVATIVES 

AT THE jth TIME LEVEL 
THETA = VOLUMETRIC MOISTURE CONTENT (CUBIC CM / CUBIC CM) 

= SOIL WATER PRESSURE (RELATIVE TO THE ATMOSPHERE) 
EXPRESSED IN CM OF WATER 

THETAR = RESIDUAL MOISTURE CONTENT 
THETAS = MOISTURE CONTENT AT SATURATION 
THETAU = MOISTURE CONTENT AT THE SURFACE NODE 

(UPPER BOUNDARY CONDITION) 
BETA1, CONA = PARAMETERS IN THE HYDRAULIC CONDUCTIVITY 

AND SOIL WATER PRESSURE RELATIONSHIP 
BETA2, ALPHA = PARAMETERS IN THE MOISTURE CONTENT AND 

SOIL WATER PRESSURE RELATIONSHIP 
HYDCON = HYDRAULIC CONDUCTIVITY OF THE SOIL (CM/HOUR) 
AKS = HYDRAULIC CONDUCTIVITY AT SATURATION (CM/HOUR) 
DELT = TIME STEP (HOURS) 
DELZ = DEPTH INTERVAL (CM) 
NTIME = NUMBER OF TIME STEPS 
NNODE = NUMBER OF NODES 
CCC = SPECIFIC WATER CAPACITY (/CM) defined as d(theta)/dh 

READ(1,11)A 
11 FORMAT(F12.3) 

READ(1,12)THETAR,THETAS,THETAU 
12 FORMAT(2F12.3) 

READ(1,13)BETA1,BETA2 
13 FORMAT(2F12.3) 

READ(1,14)CONA,ALPHA 
14 FORMAT(2F12.3) 

READ(1,15)AKS 
15 FORMAT(F12.3) 

READ(1,16)DELT,DELZ 
16 FORMAT(F12.8,F12.3) 

READ(1,17)NTIME,NNODE 
17 FORMAT(I4,8X,I2) 
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READING OF INITIAL CONDITIONS 

READ(1,18)(THETA(I,1),I=1,NNODE) 
18 FORMAT(5F12.6) 

READING OF PHILIP'S QUASI-ANALYTICAL SOLUTION RESULTS 

READ(1,*) 
READ(1,19)(PHIL1(M),M=1,10) 
READ(1,*) 
READ(1,19)(PHIL2(M),M=1,12) 
READ(1,*) 
READ(1,19)(PHIL3(M),M=1,13) 

19 FORMAT(5F12.4) 

WRITE(2,21) 
21 FORMAT(2X,'SOIL MOISTURE SIMULATION BY IMPROVED NUMERICAL METHOD') 

WRITE(2,22) 
22 FORMAT(/2X,'RICHARDS EQUATION SOLVED IN TERMS OF H') 

WRITE(2,23)A 
23 FORMAT(/2X,'A = ',F5.3) 

WRITE(2,24) 
24 FORMAT(/2X,'THETAR',9X,'THETAS',9X,'THETAU') 

WRITE(2,25)THETAR,THETAS,THETAU 
25 FORMAT(2X,F5.3,10X,F5.3,10X,F5.3) 

WRITE(2,26) 
26 FORMAT(/2X,'BETA1',10X,'BETA2') 

WRITE(2,27)BETA1,BETA2 
27 FORMAT(2X,F5.3,10X,F5.3) 

WRITE(2,28) 
28 FORMAT(/2X,'CONA',11X,'ALPHA') 

WRITE(2,29)CONA,ALPHA 
29 FORMAT(2X,F11.3,4X,F11.3) 

WRITE(2,30) 
30 FORMAT(/2X,'AKS') 

WRITE(2,31)AKS 
31 FORMAT(2X,F6.3) 

WRITE(2,32) 
32 FORMAT(/2X,'DELTI ,11X,'DELZ') 

WRITE(2,33)DELT,DELZ 
33 FORMAT(2X,F9.8,6X,F5.3) 

WRITE(2,34) 
34 FORMAT(/2X,'NTIME',10X,'NNODE') 

WRITE(2,35)NTIME,NNODE 
35 FORMAT(I6,11X,I3) 

WRITE(2,36) 
36 FORMAT(/2X,'SOIL MOISTURE AT DIFFERENT NODES') 

WRITE(2,37) 
37 FORMAT(/2X,'INITIAL CONDITIONS'/) 

WRITE(2,38)(THETA(I,1),I=1,NNODE) 
38 FORMAT(5F12.6) 

WRITE(2,*) 
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DO 100 I=1,NNODE 
H(I,1)=-(ALPHA*(THETAS-THETA(I,1))/(THETA(1,1) 

1 -THETAR))**(1./BETA2) 
100 CONTINUE 

GENERATION OF UPPER BOUNDARY CONDITION 

THETA(1,1)=THETAU 
THETA(1,2)=THETA(1,1) 
H(1,1)=-(ALPHA*(THETAS-THETA(1,1))/(THETA(1,1) 

1 -THETAR))**(1./BETA2) 
H(1,2)=H(1,1) 

GENERATION OF LOWER BOUNDARY CONDITION 

THETA(NNODE,2)=THETA(NNODE,1) 
H(NNODE,2)=H(NNODE,1) 

FORMULATION OF NUMERICAL SCHEME 

E1=BETA1/BETA2 
E2=(THETAS-THETAR) 
E3=ALPHA**E1 
E4=CONA*AKS 
E5=1./BETA2*ALPHA**(1./BETA2) 

DO 200 I = 2, NNODE-1 
THETA(I,2) = THETA(I,1) 
11(I,2) = H(I,1) 

200 CONTINUE 

DO 300 J = 2, NTIME 

ITER = 1 
400 CONTINUE 

DO 500 I = 1, NNODE 
HYDCON(I,1) = E4/(CONA+(ABS(H(I,1)))**BETA1) 
CCC(I,1) = 1./(E5*E2)*(THETAS-THETA(I,1))**(-1 

1 (THETA(I,1)-THETAR)**(1./BETA2+1.) 
HYDCON(I,2) = E4/(CONA+(ABS(H(I,2)))**BETA1) 
CCC(I,2) = 1./(E5*E2)*(THETAS-THETA(1,2))**(-1 

1 (THETA(I,2)-THETA1)**(1./BETA2+1.) 
500 CONTINUE 

./BETA2+1.)* 

./BETA2+1.)* 

DO 600 I = 2, NNODE-1 
Fl = (1-A)*CCC(I,1)+A*CCC(I,2) 
F2 = (1-A)*((HYDCON(I,1)*HYDCON(I+1,1))**0.5) 

1 +A*((HYDCON(I,2)*HYDC0N(I+1,2))**0.5) 
F3 = (1-A)*((HYDCON(I-1,1)*HYDCON(I,1))**0.5) 

1 +A*((HYDCON(I-1,2)*HYDCON(I,2))**0.5) 
DIAG(I-1) = F14A*(F2+F3)*DELT/DELZ**2 
SUB(I-1) = -A*F3*DELT/DELZ**2 
SUP(I-1) = -A*F2*DELT/DELZ**2 
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B( I-1) = ((1-A)*F3*DELT/DELZ**2)*H(I-1,1) 
1 +(F1-(1-A)*(F2+F3)*DELT/DELZ**2)*H(I,1) 
2 +((1-A)*F2*DELT/DELZ**2)*H(I+1,1)+(F3-F2)*DELT/DELZ 

600 CONTINUE 

B(1)=B(1)-SUB(1)*H(1,2) 
B(NNODE-2)=B(NNODE-2)-SUP(NNODE-2)*H(NNODE,2) 
DO 700 I = 1, NNODE-3 

700 SUB(I)=SUB(I+1) 
M=NNODE-2 
CALL TRID(M,SUP,SUB,DIAG,B) 

SUM = 0 
DO 800 I = 1, NNODE-2 
SUM = SUM + (H(I+1,2)-B(I))**2 

800 CONTINUE 

DO 900 I = 1, NNODE -2 
H(I+1,2)=B(I) 

900 CONTINUE 

IF (SUM.LE.0.0001) GO TO 1000 
ITER = ITER + 1 
GO TO 400 

1000 CONTINUE 

DO 1100 I = 2, NNODE-1 
THETA(I,2)=ALPHA*(THETAS-THETAR)/(ALPHA+ABS(H(I,2))**BETA2) 

1 +THETAR 
1100 CONTINUE 

IF (J.EQ.901) GO TO 50 
IF (J.EQ.1801) GO TO 60 
IF (J.EQ.7201) GO TO 70 
GO TO 80 

50 CONTINUE 
SUM1 = 0 
DO 102 N = 1, 10 
ERR1 = (THETA(N+10,2)-PHIL1(N))**2 
SUM1 = SUM1 + ERR1 

102 CONTINUE 
WRITE(2,103)A,SUM1 

103 FORMAT(//2X,'A = F5.3,11X,'ERROR TERM = ',F12.9) 
GO TO 40 

60 CONTINUE 
SUM2 = 0 
DO 104 N = 1, 12 
ERR2 = (THETA( N+18,2)-PHIL2(N))**2 
SUM2 = SUM2 + ERR2 

104 CONTINUE 
WRITE(2,105)A, SUM2 

105 FORMAT(//2X,'A = F5.3,11X,'ERROR TERM = ',F12.9) 
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GO TO 40 
C 
70 CONTINUE 

SUM3 = 0 
DO 106 N = 1, 13 
ERRS = (THETA(N+66,2)-PHIL3(N))**2 
SUM3 = SUM3 + ERR3 

106 CONTINUE ' 
WRITE(2,107)A,SUM3 

107 FORMAT(//2X,'A = ', F5.3,11X,'ERROR TERM = ',F12.9) 
C 
40 CONTINUE 

ITIME=J-1 
HOUR=ITIME*DELT 
WRITE(2,108)ITER 

108 FORMAT(/2X,'ITERATION = ',I5) 
WRITE(2,109)ITIME,HOUR 

109 FORMAT(/2X,'TIME STEP = ',I5,6X,'DURATION = ',F12.6,2X,'HOURY) 
WRITE(2,110)(THETA(I,2),I=1,NNODE) 

110 FORMAT(5F12.6) 
80 CONTINUE 
C 

DO 90 I = 2, NNODE-1 
THETA(I,1)=THETA(1,2) 
H(I,1)=H(I,2) 

90 CONTINUE 
C 
300 CONTINUE 

STOP 
END 

C 
SUBROUTINE TRID(M,SUP,SUB,DIAG,B) 
DIMENSION SUP(90),SUB(90),DIAG(90),B(90) 
N=M 
NN=N-1 
SUP(1)=SUP(1)/DIAG(1) 
B(1)=B(1)/DIAG(1) 
DO 111 I = 2, N 
II=I-1 
DIAG(I)=DIAG(I)-SUP(II)*SUB(II) 
IF (I.EQ.N) GO TO 111 
SUP(I)=SUP(I)/DIAG(I) 

111 B(I)=(B(I)-SUB(II)*B(II))/DIAG(I) 
DO 222 K = 1, NN 
I=N-K 

222 13(1)=B(I)-SUP(I)*B(1+1) 
RETURN 
END 
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1.000 

APPENDIX 

0.075 0.287 0.267 
4.740 3.960 
1175000.000 1611000.000 
34.000 
0.00011111 1.000 
7201 90 
0.100000 0.100000 0.100000 0.100000 0.100000 
0.100000 0.100000 0.100000 0.100000 0.100000 
0.100000 0.100000 0.100000 0.100000 0.100000 
0.100000 0.100000 0.100000 0.100000 0.100000 
0.100000 0.100000 0.100000 0.100000 0.100000 
0.100000 0.100000 0.100000 0.100000 0.100000 
0.100000 0.100000 0.100000 0.100000 0.100000 
0.100000 0.100000 0.100000 0.100000 0.100000 
0.100000 0.100000 0.100000 0.100000 0.100000 
0.100000 0.100000 0.100000 0.100000 0.100000 
0.100000 0.100000 0.100000 0.100000 0.100000 
0.100000 0.100000 0.100000 0.100000 0.100000 
0.100000 0.100000 0.100000 0.100000 0.100000 
0.100000 0.100000 0.100000 0.100000 0.100000 
0.100000 0.100000 0.100000 0.100000 0.100000 
0.100000 0.100000 0.100000 0.100000 0.10000.0 
0.100000 0.100000 0.100000 0.100000 0.100000 
0.100000 0.100000 0.100000 0.100000 0.100000 

0.2484 0.2420 0.2356 0.2217 0.2040 
0.1787 0.1491 0.1247 0.1130 0.1054 

0.2506 0.2451 0.2395 0.2320 0.2201 
0.2038 0.1806 0.1567 0.1332 0.1172 
0.1109 0.1047 

0.2490 0.2448 0.2406 0.2364 0.2286 
0.2198 0.2063 0.1891 0.1686 0.1482 
0.1305 0.1165 0.1072 

- II 

49 



APPENDIX - III 

SOIL MOISTURE SIMULATION BY IMPROVED NUMERICAL METHOD 

RICHARDS EQUATION SOLVED IN TERMS OF H 

A = 1.000 

THETAR THETAS THETAU 
.075 .287 .267 

BETA1 BETA2 
4.740 3.960 

CONA ALPHA 
1175000.000 1611000.000 

AKS 
34.000 

DELT DELZ 
.00011111 1.000 

NTIME NNODE 
7201 90 

SOIL MOISTURE AT DIFFERENT 

INITIAL CONDITIONS 

NODES 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 
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A = 1.000 

ITERATION = 

TIME STEP = 

ERROR TERM = 

2 

900 DURATION = 

.000243760 

.099999 HOUR 

.267000 .266377 .265630 .264728 .263631 

.262284 .260611 .258504 .255806 .252278 

.247550 .241032 .231760 .218201 .198273 

.170961 .141294 .119335 .107839 .102937 

.101050 .100363 .100122 .100040 .100013 

.100004 .100001 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 ,100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

A = 1.000 ERROR TERM = .000378676 

ITERATION = 2 

TIME STEP = 1800 DURATION = .199998 HOUR 

.267000 .266817 .266604 .266358 .266071 

.265738 .265349 .264896 .264364 .263740 

.263001 .262125 .261076 .259813 .258276 

.256386 .254033 .251057 .247230 .242209 

.235480 .226274 .213502 .195932 .173225 

.148237 .127064 .113403 .106152 .102706 

.101161 .100489 .100203 .100083 .100033 

.100013 .100005 .100002 .100001 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 

.100000 .100000 .100000 .100000 .100000 
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A = 1.000 ERROR TERM = .003068143 

ITERATION = 2 

TIME STEP = 7200 DURATION = .799992 HOUR 

.267000 
266996 
266989 
266976 

.266952 
266908 
266828 
266682 

.266417 
265926 
264999 
263180 
259318 

.249767 
217934 
125139 
100794 
100019  

266999 
266995 
266987 
266972 
266945 

.266895 
266805 
266641 

.266341 

.265785 

.264729 
262630 
258075 

.246276 
204086 
113484 
100382 
100009  

.266999 
266994 
266985 
266968 

.266937 

.266881 
266780 

.266595 
266256 

.265625 

.264419 

.261990 

.256579 

.241805 
186077 
106851 
100183 
100004 

266998 
.266993 
266982 

.266963 
266929 
266866 
266751 
266543 
266159 
265443 
264063 

.261242 

.254764 
235981 
J64586 
103382 
100087 
100001 

.266997 

.266991 

.266979 

.266958 
266919 

.266848 
266719 
266483 
266050 
265236 

.263653 
260361 

.252536 

.228270 
142819 
101645 
100041 
100000 
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