
CS/AR-2/2004 

HYDROLOGICAL MODELING OF STREAMFLOWS 
USING ARTIFICIAL NEURAL NETWORKS 

FOR SINDH BASIN 

NATIONAL INSTITUTE OF HYDROLOGY 
JAL VIGYAN BHAWAN 

ROORKEE-247 667 (UTTARAKHAND) 

2004 



DIRECTOR 
Dr. K.D. Sharma 

COORDINATOR 
Dr. A.K. Bhar 

STUDY GROUP 
Sh. T. Thomas 

Sh. R.K. Jaiswal 
Dr. Surjeet Singh 



PREFACE 

The effective management of the water resources requires input from hydrological studies, 
mainly in the form of estimation or forecasting of the magnitude of the hydrological variables like 
rainfall and runoff. Deterministic and stochastic approaches are available to make these forecasts. In 
situations where information is needed only at specific sites in a river basin and where adequate 
meteorological and hydrological information is not available, the time and effort required in developing 
such models may not be justified. Site specific and simple neural network models seem attractive to 
apply under these circumstances. The current trend seems to be to model the data rather than the 
underlying physical process. An artificial neural network is a flexible mathematical structure, which is 
capable of identifying complex non-linear relationships, between input and output data sets, and has 
been found to be useful and efficient in problems for which the characteristics of the process are difficult 
to describe using physical equations. The success with which ANN has been used to model dynamic 
system in other fields of science and engineering, suggests that the ANN approach may prove to be an 
effective and efficient way to model the rainfall runoff process. 

This report, titled 'Hydrological Modeling of Stream flows Using Artificial Neural Networks for 
Sindh Basin presents a research study conducted to develop a rainfall-runoff model using ANN 
approach which has been trained and tested for the Sindh River Basin in Madhya Pradesh. The study 
demonstrates the applicability of ANN approach in developing effective non-linear models of the 
rainfall runoff process without the need to explicitly represent the internal hydrologic structure of the 
watershed. The study has been conducted by Sri. T. Thomas, Scientist 'B', Sri. R. K. Jaiswal, 'PRA' and 
Dr. Surjeet Singh, Scientist 'C' of Ganga Plains South Regional Centre, Sagar under the guidance of 
Dr. A. K. Bhar, Scientist 'F', National Institute of Hydrology, Roorkee. 

K. D. Sharma 
Director 



ABSTRACT 

The problem of transformation of rainfall to runoff has been a very active area of research 
throughout the evolution of the subject of hydrology. The relationship of rainfall-runoff is known to be 
highly non-linear, complex, time varying and spatially distributed. It involves many highly complex 
components such as interception, depression storage, infiltration, overland flow, interflow, percolation, 
evaporation and transpiration. Transformation of rainfall to runoff is to be understood in order to 
forecast the stream flows for water supply, flood control, irrigation, drainage, water quality, power 
generation and wild life propagation. Every model is an attempt to capture the essence of the complex 
hydrologic system in a meaningful and manageable way, but it is important that the conceptualization 
involves considerable degree of simplification. Conceptual rainfall runoff models are designed to 
approximate within their structures the general internal sub-processes and physical mechanisms, which 
govern the hydrologic cycle. Conceptual models provide daily, monthly or seasonal estimates of the 
stream flow for short-term and long-term forecasting by mathematically formulating the entire physical 
process in the hydrologic cycle. A 6-parameter conceptual model of simple structure has been developed 
to represent the rainfall-runoff relationship The efficiency of the model varies between 0.67 and 0.83 
during calibration and between 0.76 and 0.82 during validation. The percentage difference in volume 
between the observed and computed annual flows vary between — 5.84 % and 25.65 %. The correlation 
coefficient between the observed and computed flow series varies between 0.90 and 0.96 
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1.0 INTRODUCTION 

In many parts of the world, rapid population growth, urbanization, and industrialization have 
resulted in the increased demand for water. These same pressures have resulted in altered watersheds 
and river systems, which have contributed to a greater loss of life and property damages due to flooding. 
It is becoming increasingly critical to plan, design, and manage water resources systems carefiflly and 
intelligently. Many years, hydrologists have attempted to understand the transformation of 
precipitation to runoff, in order to forecast stream flow for purposes such as water supply, flood control, 
irrigation, drainage, water quality, power generation, recreation, and fish and wildlife propagation. 
Therefore the efficient water resources development and management is necessary for any country for 
its economic growth. In India more than 80 percent of rainfall occurs in the four monsoon months from 
June to September. More than 3000 major and medium multipurpose reservoir projects have already 
been constructed in India to regulate the stream flow for various uses. 

Modeling rainfall-runoff at the watershed scale is important for water resources management, 
safe yield computations and design of flood control structures. A model of the rainfall-runoff 
relationship is an essential component in the process of evaluation of water resource projects for which, 
most of the time a sufficient length of record of flow may not be available whereas the rainfall data may 
be available. This indeed is a major problem for developing countries like India where the use of a well-
equipped measuring system is of recent origin. Even when such concurrent data are available, the length 
of record is generally very limited. Hence a rainfall-runoff model that can yield sufficiently accurate 
results with such short lengths of data is desirable and useful. 

The response of a watershed to precipitation is complicated by various hydrologic components 
that are distributed within it in a heterogeneous manner. Watershed runoff depends on geomorphologic 
properties such as topology, vegetation and soil type of the watershed and the climatic factors such as 
precipitation, temperature etc. The influence of all these factors on the runoff is not understood clearly. 
The transformation of precipitation to watershed runoff involves many highly complex components, 
such as interception, depression storage, infiltration, overland flow, interflow, percolation, evaporation, 
and transpiration. Conceptual models provide daily, monthly, or seasonal estimates of stream flow on a 
continuous basis and are designed to approximate within their structures, the general internal sub-
processes and physical mechanisms that govern the hydrologic cycle. The entire physical process in the 
hydrologic cycle is mathematically simulated in conceptual models, which usually incorporate 
simplified forms of physical laws and are generally non-linear, time invariant and deterministic with 
parameters that are representative of watershed characteristics. The accuracy of model predictions is 
very subjective and highly dependent on the user's ability, knowledge, and understanding of the model 
and of the watershed characteristics. 

Artificial neural networks (ANN) have found increasing applications in various aspects of 
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hydrology. ANN refers to computing systems whose central theme is borrowed from the analogy of 
biological neural networks. An ANN is described as an animation-processing system that is composed 
of many non-linear and densely interconnected processing elements or neurons. Artificial neural 
networks are also referred to as "neural nets", "artificial neural systems", "parallel distributedprocessing 
systems", and "connectionist systems." ANN is a non-linear mathematical structure, which is capable of 
representing arbitrarily complex non-linear processes that relate the inputs and outputs of any system. 
Previous studies have shown the potential of ANN for modeling rainfall-runoff relationships over the 
watershed. Neural networks are quite adept at modeling problems in pattern recognition and control 
applications. However, most implementations of the neural networks have been incapable of explaining 
their reasoning in a comprehensible manner because the knowledge of ANN is embedded in connection 
strengths and threshold values of the weights in an obscure fashion. Thus neural networks remain much 
like a black-box model. ANN approach is faster compared with its conventional compatriots, robust in 
noisy environments, flexible in the range of problems it can solve, and highly adaptive to the newer 
environments. Due to these established advantages, currently the ANN has numerous real world 
applications. The ANN approach may prove to be an effective and efficient way to model the rainfall 
runoff processes in situations where explicit knowledge of the internal hydrologic sub- processes is not 
required since it attempts to take care of the non-linearity involved in the transformation process of 
rainfall to runoff and due to its ability to generalize patterns in noisy and ambiguous input data and to 
synthesize a complex model without a priori knowledge or probability distributions. Because an ANN 
model is calibrated using automatic calibration techniques, it eliminates subjectivity and lengthy 
calibration cycles. 

The main function of ANN paradigms is to map a set of inputs to a set of outputs. The following 
advantages of a neural network can be usefully exploited in constructing models of the water resource 
processes (Thirumalaiah et al., 1998): a) When the underlying problem is either poorly defined, complex 
or not clearly understood. b) When specific solutions do not exist to the problem posed. c) When prior 
knowledge of the underlying process is not known beforehand. d) Most suitable for dynamic forecasting 
problems because the weights involved can be updated when fresh observations are made available. d) 
Small errors in the input do not produce significant change in the output because of distributed 
processing. 

In this study, ANN algorithms were used to model the daily rainfall-runoff relationship for the 
Sind river basin, Madhya Pradesh, India. The study demonstrates the applicability of ANN approach in 
developing effective non-linear models of rainfall runoff proce ss without the need to explicitly represent 
the internal hydrologic structure of the watershed. 
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2.0 REVIEW OF LITERATURE 

The concept of the artificial neurons was first introduced by McCulloch and Pitts (Maier and 

Dandy 2000) in 1943 in biophysics. The application of neural networks to solve civil engineering 
problems began in late 1980's (Flood and Kartam, 1994 a, b). The last decade has witnessed many 
applications of neural networks in water resources. These include rainfall forecasting (French et al. 
1992), multivariate modeling of water resources time series (Raman and Sunil Kumar, 1995), modeling 
of rainfall-runoff process (Hsu et at, 1995 and Crespo and Mora, 1993), and flow forecasting 
(Karunanithi et al.,1994; Zealand et at, 1999). Neural networks learn from experience and then 
perform recognition without definition. The architecture of the ANN is designed by weights between 
neurons, a transfer function that controls the generation of output in a neuron, and learning laws that 
define the relative importance of weights for input to a neuron (Caudill, 1987). When developing the 
ANN models, the statistical distribution of the data need not be known (Burke, 1991) and non-
stationarity in the data such as trends and seasonal variations are implicitly accounted for by the internal 
structure of the ANN (Maier & Dandy, 1996). The feed-forward neural networks with back-propagation 
learning algorithm are the most widely used neural networks (Free-man and Skapura, 1991; Anderson, 
1995; Hornik et at, 1989; Lippman, 1987). Details on the ANN and the back propagation-training 
algorithm can be found in (Ma ten et al., 1990; Freeman and Skapura, 1991; Anderson, 1995; Dhar and 
Stein, 1997). 

Even through the development of the feed-forward ANN in its present form was fore shadowed 
by the work of Werbos, (1974) and reinvented separately by Rumelhart et at, (1986), its application in 
rainfall-runoff modeling is of recent origin. Two types of networks, namely a feed-forward multi-layer 
perceptron (MLP) network (Rumelhart et al., 1986) and Counter propagation network (CPN) (Hecht-
Nielsen, 1987) are usually used for pattern mapping problems. Chang and Tsang, (1992), compared the 
multiple linear regressions and ANN approaches to modeling snow water equivalent and reported that 
ANN yielded better results. Karttnanithi et at, (1994), used a cascade correlation algorithm for 
predicting the flow for the time dependence of the phenomenon. In a discussion of this work, Zhu and 
Fujitha, (1994), compared the performance of fuzzy logic in rainfall-runoff modeling and applied a 
feed-forward ANN model in predicting a 3—hour lead runoff. Lorrai and Sechi, a  995), verified the 
possibility of utilizing ANN to predict rainfall-runoff relation when only the information about the 
variation of the basic input variables, namely rainfall and temperature is available. Raman and 
Sunilkumar, (1995) used artificial neural network for the synthesis of inflows to two reservoirs 
Mangalani and Pothtmdy located in the Bharathapuzha, Kerala. Smith and Eli, (1995) used a feed-
forward network to predict the runoff peak value and the time to peak for spatially distributed rainfall. 
However, the training (calibration) was attempted using simulated data. Even though this exercise 
demonstrated ANN's capability in learning the rainfall-runoff relationship through the training 
procedure, it is of limited practical use. 
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Hsu et al., (1995), showed that a non-linear ANN model provided a better representation of the 
rainfall-runoff relationship of the medium sized Leaf river basin near Collins, Mississippi than linear 
ARMAX (autoregressive moving average with exogenous inputs) time series approach or the 
conceptual SAC-SMA (Sacramento soil moisture) model. Raman and Chandramouli, (1996) used feed 
forward back propagation neural network for deriving better operating policy for the Aliyar Dam in 
Tamil Nadu and compared the operating policies using three models, dynamic programming (DP) 
model, stochastic dynamic programming model (SDP) and standard operating policy (SOP). General 
operating policies were derived using neural network model (DPN) from the DP model and it was 
concluded that the neural network procedure based on the dynamic programming algorithm provided 
better performance than the other models. Kao, (1996) used artificial neural networks to determine the 
drainage pattern from DEM data of to a sub-watershed located on Chin-Mei Creek, Taipei County, 
Taiwan using the back propagation algorithm was used for training the neural network model. Carriere 

et at, (1996), designed a virtual nmoffhydrograph system based onANN and obtained good correlation 
between the observed and predicted data. 

Minns and Hall, (1996) used a feed-forward ANN to predict runoff from rainfall data, however, 
the purpose of the paper was to demonstrate the learning ability of the network, namely learning from 
example rather than applying it to a practical situation. The black-box type modeling of the rainfall-
runoff relation can be classified under the category of pattern mapping. ANN have also been applied for 
prediction of water quality parameters and real-time forecasting of water quality Dandy and Maier, 

(1996). Cheng and Noguchi, (1996), obtained better results modeling the rainfall-runoff process with 
ANN using previous rainfall, soil moisture deficits and runoff values as model inputs. 

Yang et. al., (1997) developed an artificial neural network (ANN) model to simulate fluctuations 
in mid span water table depths and drain outflows as influenced by daily rainfall and potential evapo-
transpiration rates. Dawson and Wilby, (1998), used the multi-layered feed forward network structure 
with back propagation algorithm for rainfall-runoff modeling. They applied it for two flood prone 
catchments in UK and compared the performance of ANN with conventional flood forecasting systems. 
JaM, Das and Srivastava, (1999) used artificial neural network for reservoir inflow prediction and the 
operation for Upper Indravati Multipurpose project, Orissa and they found that ANN was suitable to 
predict high flows and auto-regressive integrated moving average time series model was suitable to 
predict low flows. Thirumalaiah and Deo, (1998) used artificial neural networks in real time 
forecasting of water levels at a given site continuously throughout the year based on the same levels at 
some upstream gauging station and/or using the stage time history recorded at the same site and 
concluded that the continuous forecasting of a river stage in real time sense was possible through the use 

of neural networks. 

Maier and Dandy, (1999) used six methods to optimize the connection weights of feed forward 
ANN. These were the generalized delta (GD) rule, the normalized cumulative delta (NCD) rule, the 
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delta bar delta (DBD). Zealand, Burn and Simonovic, (1999), used the artificial neural networks to 
forecast the short-term stream flow for Winnipeg river system in north-west Ontario, Canada. Saji 
Kumar and Thandeswara, (1999), concluded that an ANN was the most efficient of the models tested for 
calibration periods as short as 6 years. Tokar et al., (1999), used the back propagation feed-forward 
neural network to forecast daily runoff as a function of daily precipitation, temperature and snowmelt for 
Little Patuxent river watershed in Maryland and compared the results with existing techniques like 
statistical regression and conceptual model and concluded that ANN proved better accuracy in the 
forecasts. Maier and Dandy, (2000) reviewed the works done in the application of artificial neural 
networks to predict and forecast water resources variables. A review of 43 papers in the prediction and 
forecasting of water resources variables were considered for laying down the procedure to model the 
ANN structure. 

Elsorbagy et at, (2000), conducted a performance evaluation of artificial neural networks for 
spring runoff prediction in Red river valley, southern Manitoba, Canada by comparing the results with 
the linear and non-linear regression techniques. Tokar and Markus, (2000), compared the ANN models 
with the traditional conceptual models in predicting watershed runoff as a function of rainfall, snow 
water equivalent and temperature. Three basins with different climatic and physiographic 
characteristics namely, Fraser river in Colarado, Raccoon Creek in Iowa and Little Patuxent river in 
Maryland. For the Fraser river basin, the ANN technique was used to model the monthly stream flow and 
compared with the conceptual water balance model (WATBAL). The daily rainfall-runoff process was 
modeled in the Raccoon Creek watershed and compared to the Sacramento soil moisture accounting 
model (SAC-SMA). The daily rainfall-runoff process was also modeled in the Little Patuxent river basin 
and the training and testing results were compared to those of a simple conceptual rainfall runoff model 
(SCRR). Most of the studies carried out using the ANN technique indicate that ANN can be a powerful 
tool in modeling the precipitation runoff process for various time scales, topography and climate 
patterns. 
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3.0 OVERVIEW OF ARTIFICIAL NEURAL NETWORKS 

The speed and efficiency with which the human brain processes information, has been 
fascinating science, for quite a long time. The quest to understand these processes and solve the 
associated types of problems, have led to the development of artificial intelligence (Al). Among the 
many fields ofAI, the artificial neural network (ANN) is gaining a status prime importance even in other 
field of engineering, owing to its interesting properties such as "learning" from examples, the ability to 
represent non-linearity by means of a smaller number of parameters and the least requirement of 
information regarding the process to be modeled. Artificial neural networks are massively parallel-
distributed adaptive networks of simple non-linear computing elements called neurons, which are 
intended to attract and model some of the functionality of the human nervous system in an attempt to 
partially capture some of its computational strengths. It resembles the brain in two aspects: i) knowledge 
is acquired by the network through a learning process. ii) Inter-neuron connection strengths known as 
synaptic weights are used to store the knowledge. The common task that can be accomplished both by 
the brain and ANN may be categorized into different groups such as pattern association, mapping and 
clustering. The pattern association is the process of linking an input or an output, depending on whether 
it is an auto-associative or a hetero-associative neural network, to the corresponding input, by means of 
the inter-neuron connection strengths. In contrast, in pattern mapping, the under-lying input—output 
relationship is captured by means of a suitable "learning" strategy. The pattern clustering deals with 
grouping of patterns based on the proximity of each pattern with others (Thandaveswara and Sajikumar, 

1998). 

An ANN is an information processing system composed of many non-linear and densely 
interconnected processing elements or neurons. In most general form, the neural network can be viewed 
as comprising of eight components namely, (a) neurons, (b) activation state vector, (c) signal function, 
(d) pattern of connectivity, (e) activity aggregation rule, (f) activation rule, (g) learning rule and (h) 
environment. There can be three type of neurons namely, input neurons which are designated to receive 
external stimuli presented to the network, output neuron which gives the output signals generated from 
the network and hidden neurons which compute intermediate functions and their states are not available 
to external environment. The activation state vector is a vector of the activation level x, of individual 
neurons in the neural network, X= (x,,... x)r  . The signal function generates the output signal of 
the neuron based on its activation. The common signal functions are binary threshold, linear threshold 
and sigmoid functions. Most networks are fixed-homogeneous, in the sense that all neurons within a 
field or layer have the same signal function. The pattern of connectivity essentially determines the 
interconnection architecture or the graph of the network. The memory of the network resides in the 
connections and it is the connections together with the neuron signal functions that determine the global 
behavioral properties of the network and thus the function it performs. The activation rule is a function 
that determines the new activation level of a neuron on the basis of its current activation and external 
inputs. The learning rule provides a means of modifying connection strengths based on both external 

(6) 



stimuli and network performance. The environment within which the neural networks can operate could 
be noiseless (deterministic) or noisy (stochastic). 

3.1 Architecture of the Network 

A neural network can be viewed a weighted direct graph in which the artificial neurons are nodes 
and directed weighted edges represent connections between neurons. The architecture in which the local 
group of neurons can be connected may be either of (a) Feed forward architecture — in which the network 
has no loops, or (b) Feedback architecture — in which loops occur in the network because of feedback 
connections. Different network architectures yield different behavioral patterns of varying complexity. 

The neurons in a network are arranged in groups called layers and each neuron in a layer operates 
in logical parallelism. Information is transmitted from one layer to others in serial operation (Hecht-
Nielsen 1990). A network can be composed of one or many layers. The architecture of an ANN is 
designed by weights between neurons, a transfer fiinction that controls the generation of output in a 
neuron, and learning laws that define the relative importance of weights input to a neuron (Caudill 
1987). 

3.2 Multilayered Feed Forward Networks 

The multi-layered feed forward network is shown in Fig. 3.1 .The input layer has n-linear 
neurons that receive real valued external inputs in the form of an n-dimensional vector in R°. This layer 
also includes an additional bias neuron that receives no external input but generates a signal +1 that 
feeds all bias connections of the neurons of the hidden layer. The hidden layer has q-sigmoid neurons 
that receive signals from the input layer. A bias neuron has also been added in the hidden layer to 
generate a +1 signal for bias connections of the output layer neurons. The output layer comprises ofp-
sigmoid neurons. The neuron layers compute in a feed forward fashion, i.e., the signals from one layer of 
the neurons act as inputs to the next layer, and so on. Finally the network signals that emanate from the 
last layer of neurons comprise a p-dimensional vector of real numbers in vector R. The neural network 
thus maps a point in R" (the input space) to a point in RP (the output space). The most distinctive 
characteristic of an ANN is its ability to learn from examples. Learning (or training) is defined as self-
adjustment of the network weights as a response to changes in the information environment. When a set 
of inputs is presented, a network adjusts its weights in order to approximate the target output (observed 
or measured output) based on certain algorithms. 

3.3 Back Propagation Learning Algorithm 

Back-propagation is the most commonly used neural network algorithm in the field of water 
resources applications. In the back-propagation algorithm, the network weights are modified by 
minimizing the error between target and computed outputs. In feed forward back-propagation networks, 
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Fig.3.1: Schematic diagram of a feed-forward back propagation network 

the information is processed in the forward direction from the input layer to the hidden layer(s), and then 
to the output layer. The objective of a back-propagation network is to find the weight that approximates 
the target values of the output with a selected accuracy. The least-mean square error method, along with 
the generalized-delta rule, is used to optimize the network weights in back-propagation networks. The 
gradient-descent method and the chain rule of derivative are employed to modify the network weights 
(Rumelhart et al., 1986). 

Training is composed of two major phases namely, the forward propagation step followed by a 
back propagation step. In the forward propagation step, firstly the input data is presented to the input 
layer of the network, which is multiplied by the initial weights, and then the weighted inputs are added 
by simple summation to yield the net input to each neuron. The net input of a neuron is then passed 
through an activation function or transfer function to produce the output of a neuron. After the output the 
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neuron is transmitted to the next layer as input, this procedure is repeated until the output layer is 
reached. So in each successive layer, every processing unit sums its inputs and then applies a transfer 
function to complete its output. The output layer of the network then produces the output of the network. 
The backward propagation step begins with the comparison of the network's output pattern to the target 
vector when the error between the output of the network and the target outputs are computed. If an error 
is higher than a selected value, the backward propagation step then calculates the error values for the 
hidden units and makes changes for their incoming weights, starting with the output layer and moving 
backward through the successive hidden layers. In this back propagation step the network corrects its 
weights in such a way as to decrease the observed error. The training stops when the error is within the 
prescribed tolerance levels. 

In the back-propagation networks, the modification of the network weights is accomplished with 
the derivative of the activation function. Generally the continuous transfer functions namely signioid or 
hyperbolic-tangent functions are used as activation function. The modification of weights in the output 
layer is different from the modification of weights in the hidden layers. In the output layer, the target 
outputs are provided, whereas in the intermediate layers, target values do not exist. Therefore, back-
propagation uses the derivatives of the objective function with respect to weights in the entire network to 
distribute the error to neurons in each layer in the entire network. The back propagation algorithm can 
be described as follows: 

The network considered is assumed to be homogeneous i.e. all neurons in a layer use similar 
signal functions. For linear neurons in the input layer 

8 (x)= x (3.1) 

where, 
x is the activation and (x) is the signal 
For sigmoid neurons in the hidden and output layers, 

1 
8(x)— 

where, 
= sigmoid gain scale facto; generally taken as one. 

The set of Q training pairs are represented by 

T , D X„ R", .13„ 

1+ e' (3.2) 

(3.3) 
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where, 
D,= vector response desired 
X. = vector input to the network 

The vector pairs in Tare assumed to be samples of some unknown function]? RI( for the neural 
network to approximate. The gradient of the pattern error is employed to reduce the global error over the 
entire training set. Such weight changes are effected for a sequence of training pairs (X,, D), (X2, 
D),.............,(X„, D) from the training set. Each weight change perturbs the existing neural network 
slightly in order to reduce the error on the pattern in question. The e training pair (X„, D) then defines the 
instantaneous error: 

(3.4) 

where, 

Ek =(eik  epk )-- (dik  — (y; d),  (k 
G

i
k y (3.5) 

The instantaneous sum squared error , is the sum of squares of each individual output error 
scaled by one-half: 

= k —5 6A ))2= j E„ K j 2  

The mean square error, is computed over the entire training set T, 

2 =1 Ek 
Q k=1 

The error calculated above is used to compute the change in the hidden to output layer weights, 
and the change in input to hidden layer weights (including all bias weights), such that the global error 
measure gets reduced. The weights of the network are then updated in accordance with these weight 
changes as given below: 

For Hidden to Output layer weights 

k+1 
Whi  Wk./  AW N  

n„,  \ 
k  

=Whj  +" — awc hj 

= w;; i‘1 

(3.6) 

(3.7) 

(3.8) 
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For Input to Hidden layer weights 

kt1 
= k  AWka, 

a£ 
= Wih  

Owth 

=w, +Tic hk 

The learning rate in the back propagation algorithm with pattern update has to be kept small in 
order to maintain a smooth trajectory in weight space. An elegant way of increasing the learning rate 
while maintaining stability is to introduce a momentum term in Equations 3.8 and 3.9: 

Aw,
v 
 =16,5 

(zAi: 
 )÷0(Aminki: (3.10) 

Avv,
k
h  = h

k 
x‘

k. (3.11) 

where >0 is the momentum. When the weights in the network are updated in accordance with the 
momentum, the algorithm is called generalized delta rule; but if =0 the above equation reduces to 
standard back propagation learning rule without momentum. 

3.4 Salient Properties ofANN 

The salient features of the neural network include robustness, the capacity for associative recall, 
the capacity for function approximation and generalization. Neural networks are robust in the sense that 
they can tolerate significant distortions in inputs for which they are programmed. This property is called 
fault tolerance due to which the network performance continues to be satisfactory when the inputs are 
distorted. The robustness of neural networks stems from the fact that it stores information in a distributed 
fashion. Due to the capacity of associative recall, one concept invokes related memories. Because of the 
dense inter-connectivity and reinforcing structure embedded in the ensembles of connected neurons, 
associative recall becomes a natural capability of the neural network. Neural networks because of their 
learning capability are often referred to as adaptive function estimators. Neural networks have a model 
free estimation capability in the sense that they create internal representations through examples, 
without being supplied a mathematical model of how outputs depend on inputs. Also the neural 
networks are able to generalizations based on previously learnt pattern class information. 

(3.9) 



4.0 THE STUDY AREA 

The Sindh river basin up to Madhikhera dam site has been considered for applying the artificial 
neural networks for modeling and forecasting the river inflows. The details about the study are given in 
the following sub-sections. 

4.1 Sindh River Project 

Harnessing of the Sindh river to utilize its available yield for irrigation and power purpose has 
engaged the attention of the erstwhile Gwalior state as early as in the year 1900. Adjoining the Sindh 
basin to its North is Parvati basin. River Parvati has been harnessed at two places by constructing 
reservoirs at Kaketo and Harsi. in the first phase of the project a diversion weir was constructed on river 
Sindh near village Mohini in Shivpuri district and a feeder canal 6.4 km long to divert the water to the 
existing Harsi reservoir. This was necessitated since the command area of the Harsi system, which was 
completed in 1935, developed fast and exceeded the designed irrigation area. The construction of the 
Mohini pickup weir was taken up in 1972 and project including the appurtenant works and feeder canal 
was commissioned in 1977. The second phase of the project envisages the construction of the Mohini 
Sagar (Marhikheda) dam across river Sindh at Marhikheda village 16 km. u/s of the existing Mohini 
pickup weir in Shivpuri district. The location of the dam is at 25°33'20" N latitude and 77°51'10" E 
longitude. The reservoir formed is designated as Mohini Sagar dam at Marhikheda. 

4.2 Catchment Area and its Location 

The Sindh basin is situated in the northern part of Madhya Pradesh and has its origin at village 
Gopi talai in Lateri tehsil of Vidisha district in Madhya Pradesh at an elevation of 335 m. above m.s.l. 
Sindh river which is a tributary of Jamuna, flows mostly through MR through the districts of Vidisha, 
Guna, Shivpuri, Gwalior, Datia and Bhind. It then joins river Jamuna near village Jagwanpur in Etawa 
district of Uttar Pradesh. The total length of the river from its origin to its confluence with Jamuna is 500 
km. The river flows through narrow valleys and is joined by numerous tributaries. The important 
tributaries are Nawari, Chonch Tndemala, Khair, Aer, Barasi, Amar, Mahwar, Parwati, Noon and Yasuli. 
The river flows through Malwa plateau in Vidisha and Gtma districts. In Shivpuri, it flows through a 
thick forest and hilly stretch and enters the plains after the town Narwar in Shivpuri district. The total 
drainage area up to the confluence with Jamuna River is 18,389 sq. km. and up to the proposed dam site 
is 5,540 sq. km. The average bed slope of the river is 0.754 m per km. in the first 129 km. and 1.9 m. per 
km. in next 80.265 km. The catchment area is elongated and narrow with a length of 1521cm. and average 
width of 37 km. The catchment area lies between elevation 274 m. and 533 m. above mean level. The 
important tributaries joining river Sindh up to Mohini Sagar dam are Barahi nallah and Khair nallah on 
the left bank and Aer nallah, Inder nallah and Chonch nallah on the right bank. The location map of the 
study area is given in Fig. 4.1. 
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Fig. 4.1: Map showing Sindh river basin up to Madhikheda dam site 

4.3 Climate 

The northern region of Madhya Pradesh around Gwalior, Datia and Shivpuri districts is semi-
arid and the climate in the area in hot and dry. There are three distinct types of climate. During summer 
months of March to June, which is hot and dry, and the temperature goes as high as 45.6° C. The rainy 
season from July to October which is humid and winter season from November to February, which is dry 
and cold and the temperature goes down to freezing point. The direction of the prevailing wind is 
generally southwest during the period of April to July. It is northwest during September to November. 
During the rest of the period, i.e. winter, it is generally calm. The wind speed is maximum during the 

summer months. 
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4.4 Rainfall 

The monsoon generally arrives in the last week of June and continues till the end of September, 
receding thereafter by middle of October. Over 90% of the rain falls during the monsoon season and the 
rest 10% is distributed during the winter and summer months. There is spatial variation in the 
distribution of rainfall in the catchment and it is heavier near the head reaches of Vidisha and Guna 
districts reducing gradually towards Shivpuri district. The mean annual rainfall in the basin is 923.29 
mm 

4.5 Geology 

The Sindh river flows through narrow valleys and at the reservoir site the hills rise rapidly from 
the river bed. The hills are covered with Vindhyan sand stone formation on the top. The river has cut its 
way through the sand stone formation at top into the granite gneiss on the sides and in the riverbed. On 
the left flank the hills are continuous without any break, but on the right flank the hills have gaps. 

4.6 Soils and Land use 

The catchment area in Vidisha and Guna districts lies in the Malwa Plateau and is covered with a 
top layer of black cotton soil and agriculture is being carried out. The catchment in Shivpuri district is 
hilly and is covered with thick forest. 

4.7 Floods 

The Sindh river flows in deep gorge and the banks are quite high which accounts for confining 
the floods within its banks. No case of serious damage due to floods in the river has been reported so far 
and there are no big towns on its banks. However the Sindh river being a tributary of river Jamuna, 
contributes to the floods of the Jamuna river in Uttar Pradesh. 

4.8 Reservoir 

The topography of the reservoir plan of Sindh River is such that the river flows through narrow 
valleys and practically the storage is confined in valleys and there are no big pockets. Sheet rock of 
granite formation outcrops in the riverbed. The flanks rise rapidly from them riverbed and are plain at the 
top the hills The intake structure for the powerhouse will be in the left flanks of the reservoir. The dead 
storage of 113.7 M.cum (4,018 Mcft.) is fixed on the basis of site storage studies by C.W. & P.C. at 
Nandan site. The total love storage available both at Mohini Sagar and Mohini pick-up weir is 976.34 M. 
Cum. The water-spread area at F.R.L. of 346.285 m. above m.s.l. is 5679 hectares, 
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5.0 DATA AVAILABILITY 

The present study intends to develop a rainfall-nufoff relationship for the Sindh basin from the 
available historical data records, so as to develop effective water management policies to meet the 
demand from all sectors. 

5.1 Rainfall 

The Sind basin has seven rain gauge stations inside the catchment area namely, Mundrasagar, 
Aron, Behtaghat, Mairta, Khatora, Rannod and Amola. These are concentrated mostly in upper and 
middle portions of the basin. There are breaks in continuity of data of some of the stations. After 
checking the data of all the stations for period of availability, all seven rain gauge stations were 
considered for the study. The daily rainfall data from 1992 to 2001 for the monsoon season have been 
considered for training and testing the developed network. 

5.2 Stream flow 

The Water Resources Department, Govt. of Madhya Pradesh maintains a gauge-discharge (G-D) 
site at the dam site intercepting a catchment area of 5540 sq. km.. Daily values stream flow data at this G-
D site available from 1992 to 2001 for the monsoon season have been considered for training and testing 
the developed network except for 1994 for which data is not available. The study has been restricted to-
monsoon season (June to October) alone, since the interest was to model the inflows in the basin using 
the developed model so as to assess the availability of the water in the dam. 

5.3 Computation of Mean Aerial Rainfall 

The mean aerial rainfall over the catchment was computed by the Thiessen Polygon method. The 
seven rain gauge stations within the study area were considered for computing the mean aerial rainfall in 
the catchment during the monsoon season from June to October. The catchment area was digitized and 
the Thiessen weight evaluated using ILWIS 3.0 (Integrated Land & Water Information System). The 
map showing the Thiessen Polygons is given as Fig. 5.1 and the Thiessen weights for the representing 
rain gauge stations in the basin are given in Table 5.1. 

5.4 Processing and Analysis of Data 

The rainfall data at seven rain gauge stations in and around the basin have been used in the study. 
The data was checked for consistency by comparing the records of the rainfall for the station under 
consideration with the rainfall at the surrounding stations. Gaps in the records were filled up. Similarly, 
the discharge data at the dam site were processed to check for errors and inconsistencies. The seasonal 
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Fig. 5.1 : Thiessen polygon map of Sindh river basin upto dam site 

rainfall runoff relation was developed for all the years under consideration. The runoff coefficient for the 
basin varied from 0.501 to 0.682. The monsoon season rainfall and runoff along with the runoff 
coefficients are given in Table-5.2. The variation of runoff coefficient with the seasonal rainfall is given 

in Fig. 5.2. 

(16) 



Fig. 5.2 : Variation of runoff coefficient with rainfall 
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6.0 MODEL DEVELOPMENT 

The basic structure of a network usually consists of three layers: the input 
layer, where the data are introduced to the network, the hidden layer or layers, where data are processed; 
and the output-layer, where the results of given input are produced. When applying neural networks to 
modeling, a number ofdecisions must be made. It is imperative to choose an appropriate neural network 
structure in terms of input vector and output vector; apart from the hidden neurons. Determination of 
appropriate network architecture is one of the most important and also one of the most difficult tasks in 
the model building process. Unless carefully designed an AIVN model can lead to over parameterization 
resulting in unnecessarily large network. Secondly, one must choose an appropriate training algorithm 
and select suitable training and validation periods or data sets. Also one must decide how to pre-process 
and post-process the input and output data. While some of these operations may be automated using 
appropriate modifications to training algorithms, many decisions must still be made through a process 
of trial and error There are multitudes of different types of ANN. The present study has employed the 
feed-forward back-propagation neural network. 
The steps involved in the identification of a dynamic model of a system are: 

selection of the input and output data suitable for calibration and validation, 
selection of a model structure and estimates of its parameters, and 
validation of the identified model. 

This study involves the development of a suitable ANN model based on the back propagation 
feed forward artificial neural network and assessing the accuracy of the model in simulating the flows 
with independent test data. In the study only monsoon season (June to October) data were used for 
calibration as well as validation, the data for the years 1992 to 1998 were used for calibration of ANN 
models and the models were validated for the years 1999 to 2001. The historical flow series from 1992 to 
2001 is shown in Fig. 6.1. 

6.1 ANN Model Identification 

The ANN model structure is ideally suited for modeling highly non-linear input relationship 
such as those encountered in the transformation of rainfall to runoff. The main objective of the study was 
to use an ANN to simulate the stream flow from the available distributed rainfall and discharge data. 
Most of the previous work considered rainfall data averaged over the basin scale; this has the advantage 
of reducing the number of input variables to the network. As reported by Minns and Hall (1996), rainfall 
information alone is not sufficient to compute flow rate, since the state of the basin plays an important 
role in determining flow rate behavior. For this reason, flow data at certain time intervals before the time 
of predictions have been used as additional input information to the network. The selection of the 
number or previous flow data as input to the network was done by statistical analysis as briefed below. 
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Fig. 6.1 : Historical flow series for the years 1992-2001 

6.1.1 Standardization of time series 

For the historical flow series, the daily means and standard deviations have been calculated for 
the monsoon season and are shown in Fig. 6.2 and Fig. 6.3 respectively. Daily mean flow was lower at 
the beginning and end of the season as compared to that of the mid of the season. The daily standard 
deviation values was also lower at the beginning and end of the season as compared to that of the mid of 

the season. 

A time series may often contain periodic components that tend to repeat over a period of time 
intervals, due to astronomic cycles. The behavior of time series is known as a periodicity, which means 
that the statistical characteristics change periodically within the year. Within the year periodicity is due 
to the annual revolution of the earth around the sun, by the moon and daily rotation of the earth. These 
seasonal effects are repeated in the same time in each year and are thus deterministic. Seasonality can be 
removed by pre-whitening i.e. by standardizing and removing the periodicity. The periodic component 

can be removed from the time series as given by, 

x„ — 
= ' 6.1 

a, 

where, 

= standardized time series 

it  and a, are the mean and standard deviation of the T  ,„ day ; 

"C time interval within the year 
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Fig. 6.2 Plot of sample mean of flow derived from data of 1992-2001 

Fig. 6.3 : Plot of sample standard deviation of flow derived from data of 1992-2001 
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The standardization procedure preserves the first two moments i.e. mean and standard deviation 
of the historical time series. The sample periodic means and standard deviations can be estimated from 
the observed time series for each day and can be substituted in equation to obtain the standardized flow 
series. Salas et. al., (1988) mentioned that the sample estimates of means and standard deviations are 
subjected to larger errors, since they are usually estimated from a relatively small number of year's data, 
as compared to the population estimates. Also, the use of too many-estimated parameter violates the 
principle of statistical parsimony in the number of parameters. To reduce the number of estimated 
parameter and to obtain better estimates of these parameters, the values of mean and standard deviation 
are smoothened by harmonic analysis. The estimates of periodic parameters were obtained in this study 
by using the Fourier series analysis as given below, 

Let V, represents any periodical parameter of the flow series, such as the daily mean or standard 
deviation then its representation by harmonics can be given as, 

v, = „+ , cos(2isit 1w)± B sin(24, I w)] 6.2 

2 Ai = —E v, cos(2Ty/ co) for j=1, ,h 6.3 

2 a' B =-- V sin(21/ co) for j=1 ,h 6.4 
t=t 

"Lanai  =Fourier series coefficients 
co = number of seasons in a year, for daily flows is 365 
j= harmonic 

un-smoothened parameter for the season, i.e. mean or standard deviation 
m = number of harmonics fitted to smoothen the parameter 
v, = overall mean of the parameter 

The Fourier series fit procedure requires the selection of the number of the significant 
harmonics. Salas et. al (1988) provides a procedure for selecting the number of significant harmonics by 
plotting the periodogram. However, this procedure added too many harmonics to the function (Aboitiz 
et. al., 1986). The significance of the harmonics has been tested by using the P„ and P,„ test. Though the 
maximum number of harmonics that can be fitted to any seasonal parameter is w / 2 ,yet out of co / 2 only 
few harmonics may be significant. The steps in the test are: 

For each harmonic, the variance explained in it is given by, 

Var(15)— 6.5 
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The ratio of the variance explained by the jth  harmonic and the original variance is given by 

Var(k) 
AP- 6.6 

Var(vt ) 

The sums of Ads)  for j=1,2, , —co are given as 
2 

= 

Po/2 = API ±1+ +AP0/2 6.7 

The .13 and P,, is computed as given by 

P = a( c°  mm j"  6.8 CN 

Pmin = Pmin 6.9 

where, 

a=0.33 and C=1 for mean and 2 for standard deviation 

The harmonics explaining variance up to P, are considered for smoothening the parameter. The 
Fourier series model with six harmonics were selected and they fitted well to both the mean and standard 
deviation and the fitted models resulted in smooth functions, which can be expected with a large sample 
size. Estimates of the periodic mean and standard deviation obtained from the fitted Fourier series 
models were utilized to obtain the standardized flow series using equation 6.10. The removal of the 
periodic component by the parametric approach is given by, 

— 
—  6.10 

C7T S 

where, Xt, = smoothened mean and 

cYt,s = smoothened standard deviation 

The standardized Z series generally may not have overall mean of zero and standard deviation 
of one. The mean and standard deviation of the resulting standardized series were found to be 0.14 and 
2.64 cumecs, respectively, which are not close to the theoretical values. The completely standardized 
series having zero mean and unit variance is obtained by 

6.11 
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where, 
= 

45  = 

= 
= 

completely standardized flow series 

standardized series in the previous step 

mean of the standardized series in the previous step 
standard deviation of the standardized series in the previous step 

6.1.2 Identification of the input vector 

The identification of number of flow series in the input vector is done based on the sample auto 
correlation and partial auto correlation functions. These functions reveal the correlation structure of the 
time series and thus, are helpful in determining the underlying stochastic process. The theory is based 
on the assumption of second order stationarity. The assumption can be explained by letting (z„ z,„) be a 

pair of flow measurements at t and t+h in time, separated by a vector h i.e. lag. Each;, is a realization of 

the random variable (Zr, t within the time domain of interest) is called a random function and is said to be 

second order stationarity if: 

the expected value ER) exists and is the same within the time domain: 

E(Z ,) = m 6.12 

the covariance for each pair of random variables (z„ z„.,) exists, is the same in time, 

and depends on h, 

Cov(h) = E(z„z(,h )— nt2 6.13 

Stationarity of the covariance implies stationary of the variance. 

6.1.3 Autocorrelation function 

The autocorrelation function expresses the degree of dependency among neighboring 
observations. It is a process of self-comparison expressing the linear correlation between an equally 
spaced series and the same series at a specified lag. Let z„, z,, z2 .  z„, be a realization of a stationary 

stochastic process, then the population autocorrelation function can be defined as the quotient of the 
population auto covariance, cov(z„ ) and variance, var(z): 

p (h) — 
Cov(z „ z r ) 

Var(zt ) 

where, 
(h) = auto correlation function 

Zr  = the value of the variable at tth  time 

h = time lag 

6.14 
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Since the series analyzed is just one particular realization out of an infinite number of 
realizations of a stochastic process produced by the underlying probabilistic mechanism, the population 
autocorrelation function can be estimated using the simple autocorrelation function r(h): 

N-h 

- n(2 

r(h).  '1  N-17 15.r(hW 

E (z, _ 02 

6.15 

t=1 

Where, I =sample mean 

The 95% confidence band for the sample autocorrelation function given by Anderson and 
Jenkins, 1970: 

r(h) = 0 ± 1.9,6  .[1+ 2E 7-.212  h>q 6.16 

where, 
q = order ofthe process 
n = number of observation in the series 

The autocorrelation function is a diagnostic of the moving average process. Therefore, the value 
of a variable at a given time can be estimated from a purely random series using the weighted sum of the 
values at previous time steps. 

6.1.4 Partial autocorrelation function 

The partial autocorrelation function is another way of representing the time dependence 
structure of a series or of a given model. It is useful for diagnosing the order of the autoregressive 
processes. The autoregressive process has a relationship with the previous time steps. Therefore, the 
idea of autocorrelation, which measures the correlation of variable separated by assigned lags, can be 
extended to that of correlation, where dependence on the intermediate terms can be removed. 
Mathematically, it can be defined as, 

eP k(k) = corr(z„;_k  I z,A, >z 6.17 

and is the correlation between z, and z, excluding the effects of z,.„ z,.„....,z_k„,. Jr.this equation, k is the 
distance or time lag measured between the measured quantities. In general, for an autoregressive process 
of order k, the partial autocorrelation coefficient , (k), is a measure of the linear association between 
and j k  (autocorrelation function at lag j and lag j-k, for j k. It is the kth  autoregressive coefficient and ,(k), 
for k=1,2,...., is the partial autocorrelation function. Lag j autocorrelation for an autoregressive [AR(k)] 
process can be written as: 
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+ePsk(k)P j-k 6.18 

where, 
,(k) =jth  autoregre.ssive coefficient ofthe AR(k) model. 

The equation 6.18 constitutes a set of linear equations, which can be written in tenns of sample 
partial autocorrelation functions ,(k). Thus the sample partial autocorrelation function can be obtained 
by solving equation 6.18. Bartlett (1946), gave the 95% confidence band for the sample autocorrelation 

function as, 

6.19 

where, 
= number of observations in the series. 

6.1.5 Cross-correlation function 

The number of previous day's rainfall which influences the flow rate to be predicted was 
determined based on the cross-correlation between the rainfall and discharge. The procedure that was 
used to identify the number of rainfall patterns as input to the network is summarized below. The lag-k 
correlation coefficient between the random variables N and Xh  is estimated as given by, 

  

n-k 

EkAbi - -xh ) 

 

r (k)= 

 

6.20 

 

(n—  

  

     

     

where, 
n = total number of observations on Xi  and Xh  

ith observation on X, 
X = mean of the observation on X 
a' variance of Xj  

The lag-kcross-correlation coefficient is thus the correlation coefficient between the values of 

X j  and the values of Xhthat are k units apart. hi our case, Xi and Xi, represents the standardized values 

of average rainfall and discharge respectively. 

6.2 Model Performance Indicators 

Amean squared error (MSE) is one of the most commonly used performance measure in hydrological 
modeling. Many researchers used MSE or its root (RMSE) as an accuracy measure (Carpenter and Brathelemy 

1994; Bastarache eta 1997; Shamseldin 1997). The MSE andRMSE are given by, 
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2 

MSE =-1-± (Q0 0- a.Q)) 
n (=1 

RAISE= (VISE)" 6.23 

Others such as Karunanithi et al., (1994). used MSE and mean relative error (MRE) to try to fill 
some of the gaps left by considering only MSE and stated that the squared error and the relative error 
provide different types of information about the model's predicative capabilities. For each model, the fit 
to the training and testing data was done using the popular residual statistics. Some of the indicators 
considered for the model performance include bias (B), variance (V), relative bias (RB), mean absolute 
error (MAE), relative mean absolute error (RMAE). 

Br Dso -a co] 6.25 

V = MSE -(BY 6.26 

= _ 6.27 

a 

6.28 
I  MAE = E Q,(0-Q.0 
II 1.1 

RNIAE MAE 6.29 

V. 
The percentage difference in peak between the observed and computed discharge is given by, 

PK =[1- max(a)]*100 
max(Q. ) 

6.30 

The Nash-Sutcliffe goodness of fit, which is a measure of the model efficiency is given by, 
2 rt 

4 -  
E [a 0- ad 2  
1=1 

where, 

Q,(0=  observed discharge 

ao=  computed discharge 

6.23 

6.24 

6.31 
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7.0 RESULTS AND DISCUSSION 

The main objective of the study was to develop a rainfall runoff model for the Sindh river basin, 
Madhya Pradesh, which would be able to forecast the stream flow using historic time series data of 
rainfall and runoff. ANN algorithms, which are able to capture the non-linearity inherent in the rainfall 
runoff process, are capable of modelling the rainfall-runoff relationship due to its ability to generalize 
the patterns in noisy environment without a prior knowledge of probability distributions. The results 
pertaining to the study as the performance of the ANN models are presented here. 

7.1 Identification of the Input Vector to the Network 

The model building process is rather a very complicated process, which involves the proper 
identification of several features, which are very important in order to obtain a good model that is able to 
forecast with a reasonable degree of accuracy. The first and foremost step is the division of the 
available data into training set and testing set. Poor forecasts can be expected when the validation data 
contains values outside the range of that used for training. The division of the sub-sets should be done in 
such a manner that the training data as well as the testing data should be representative of the same 
population. Also the generalization ability of the model depends on the ratio of the training samples to 
the number of connection weights. If this ratio is small, over fitting of training data may occur that 
ultimately leads to poor prediction accuracy during testing of the model. The available data set was 
divided into two sub-sets namely for training the data from 1992 to 1998 was used where as the 
remaining data from 1999 to 2001 was used for testing the model. 

The data pre-processing can also have a significant effect on the model performance. The data is 
divided into their respective sub-sets as mentioned above before any data pre-processing is carried out. 
The variables are standardized as explained in the previous section. The variables are generally 
measured in different units. By standardizing the variables and recasting them in dimensionless units, 
the arbitrary effect of similarity between objects are removed. Also by adopting the harmonic analysis 
for arriving at the smoothened means and standard deviation and then using the same for standardization 
helps to remove the seasonal effects from the variables which are essentially of deterministic nature. As 
the mean and standard deviation of this standardized series is 0.14 and 2.64 which is significantly 
different from 0.0 and 1.0 respectively, so the series has been completely standardized and the mean and 
standard deviation of the completely standardized series is 0.0 and 1.0 respectively. The plot showing 
the completely standardized series of the historical flow series from 1992 to 2001 is given in Fig. 7.1. 
Also it is imperative that the variables need to be scaled down in such a way as to commensurate with the 
limits of the activation function used in the output layer. As the outputs of the logistics function are 
between zero and one they are generally scaled in this range. 

It is important to note that if the variables are scaled down to the extreme ranges of the transfer 
function, the size of the weight update becomes very small and it is possible that flat spots may occur in 
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Fig. 7.1 : Completely standardized flow series for the years 1992-2001 

training. When the transfer function in the output layer is unbounded, scaling may not be strictly 
required. However, scaling to uniform ranges is still advised. The data has been scaled by using the 
following function (Romesburg, 1984) given by equation 7.1, 

Another important limitation to be kept in mind is that ANN cannot extrapolate beyond the range 

cir  . — A7  .) 
1,1 nun/  

cimax j Xininj ) 

where, 

X,„a„i  = maximum of the/ variable in all observations 

gut  = minimum of thet variable in all observations 

of the training data. So ANN cannot account for trends and hetero-scedasticity in the data. One way to 
deal with the problem is by removing the deterministic components using methods commonly used in 
the time series analysis. The procedure of standardizing, differencing or classical decomposition is 
helpful for the same. 
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To create any rainfall-runoff model by system theoretic approach, such as ANN, it is required to 
determine from the available historical sequences of rainfall and runoff data, the choice of how many 
and which delayed runoff patterns and rainfall patterns affect the next output. This is one of the 
complexities, which make the forecast more difficult than the simple straight regression analysis. 
Conducting autocorrelation and partial correlation analysis of the river flow series and determining the 
flow lags that have significant effect on the next day's flow can contain this complication. The 
autocorrelation function (ACF) and the corresponding 95% confidence bands from lag 0 to lag 20 were 
estimated for the standardized flow. The autocorrelation plot of the standardized series is shown in Fig. 
7.2. Lag zero auto correlation is always one as it is the correlation of the variable with itself. However, as 
the lag increases, the correlation between the variable and the same variable at the specified lag 
decreases, i.e. covariance decreases. The auto correlation function showed significant correlation, at 
95% confidence level, up to lag-14, and thereafter fell near to or below the confidence band. The gradual 
decaying pattern of the auto correlation exhibits the presence of dominant autoregressive process. 

Similarly the partial autocorrelation function (PACF) and corresponding 95% confidence were 
estimated for lag 0 to lag 20. The partial correlation plot of the standardized series is shown in Fig. 7.3. 
The PACF showed significant correlation at lag-2 and thereafter fell below the confidence band. The 
rapid decaying pattern of the PACF confirms the dominance of auto regressive process, relative to the 
moving average process. The above analysis of auto and partial correlation coefficients suggested 

incorporating flow values with lag-2 in the input vector to the network. 

In the present study, this analysis was carried out and it was found that the flow on a particular 
day is dependent on two previous days flows. Similarly, the number of previous rainfall patterns that are 
having significant effect on the next day flow has been identified after conducting the cross correlation 
analysis between the rainfall and runoff variables and then going for a trial and error procedure to check 
whether any additional rainfall pattern needs to be considered as input. The cross-correlation function 
(CCF) and corresponding 95% confidence were estimated and is given in Fig 7.4. The CCF showed 

significant correlation above 0.50 for the lag-2. Hence the initial number of rainfall patterns in the input 

vector to the network has been considered for a lag of 2 days. 

The study is based on the feed-forward back-propagation neural network, which is the most 
widely used algorithm in the field of water resources. The trial started with the presentation of the input 
vector to the network, which consisted of two previous days rainfall along with two previous days 
runoff and estimating the goodness of fit statistics pertaining to the present input vector. The trial was 
continued by adding one more previous day's rainfall, i.e. lag of three days in the input vector The 
performance of the new input vectors was examined based on statistical indices. The effect of rainfall 

lags in the input vector on the performance of the network is presented in Table 7.1. The model is 

selected on the basis of the performance as examined by the goodness of fit statistics. 
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Fig. 7.2 : Autocorrelation plot of the standardized flow series 

Fig. 7.3 : Partial autocorrelation plot of the standardized flow series 
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Fig. 7.4 : Cross correlation plot 

The RMSE error has not improved much when the number of rainfall patterns in the input vector 
to the network increased from two, as can be seen from Table 7.1. These results lead to the conclusion 
that the number of previous rainfall data has a significant effect in the model performance. The 
experiment resulted in the conclusion that an input vector with 2-days rainfall lag along with 2-days 
runoff lag can produce river flow patterns in a satisfactory manner. Therefore, a sample model was 
selected by representing stream flow at the present time, t as a function of precipitation at t-1 and t-2 and 

stream flow at t-1 and t-2 as desired from the analysis of the autocorrelation and partial autocorrelation 
structure of the flow series and the cross-correlation structure between the rainfall and runoff. The 
model can be represented as 

Q(0= f(Pt 3 -2 IP/-13  Qt-2 ) 6.21 

7.2 Identification of the Network Architecture 

The determination of the network architecture is the other important aspect. The network 
geometry determines the number of connection weights and how these are arranged. The network 
architecture is decided by number of layers in the network, number of neurons in these layers. The 
neurons in the input layer and the output layer are entirely dependent on the problem being considered, 
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i.e. the number of variables in the input vector and the outputs desired from the output vector. The 
number of hidden layers can vary and so is the number of neurons in the hidden layer. This depends on 
the complexity of the underlying process to be modeled. Extensive research has pointed out that ANN 
with one hidden layer can approximate any function given that sufficient degrees of freedom are 

provided (Hornik, 1989). Sri dhar, (1996) reported that increasing the number of hidden layer to two or 
more have no significant effect in the performance of the network. But identifying the number of 
nc..:rons in the hidden layer is a very comrlicated task in !_l'n network architecture. The critical 

aspect is the ,linice of the number of neurons in the Ili:hien. layer and hence [h.: connection weights. This 

is generally done by nnd error evaluation. The important consideration while ieciding the number 
of neurons in the hidden layer is the i; between the number of training samples 9nd the number 
of connection weights. The number of weights should not exceed the number of training satiples; the 
ratio between the number of training samples to the number of connection weights should be 2:1 and it is 
believed that over fitting does not occur if the number of training samples is at least 30 times the number 

ot lice parameters. 

In the present study, a back propagation network with a single hidden layer and having five 
neurons in the input layer, two neurons in the hidden layer and one neuron in the output layer was 
selected with the logistic sigmoid transfer function for both hidden layer as well as the output layer. 
Initial random weights were assigned to the connections between the neurons from one layer to the next 
layer and the training was done in batch mode wherein the epoch size is equal to the size of the training 
set. The learning parameter and momentum parameter are other important consideration as the speed of 
the training as well as reaching to a global minima very much depend on these. The momentum factor is 
generally less than one for convergence. The mean square error is taken as the error function, which is 
minimized during the training. The mean square error function is the most widely used as it penalizes 
large errors and its partial derivative with respect to weights can be calculated easily. The goodness of fit 
statistics has been computed for the network with two neurons in the hidden layer. In the next trial, the 
number of neurons in the hidden layer is increased to three and goodness of fit statistics are evaluated. 
The effect of the number of neurons in the hidden layer is presented in Table 7.2. 

From Table 7.2, it can be observed that the RMSE during training and testing gets reduced as the 
number neurons in the hidden layer increases from two to five. Thereafter with the increase in the 
number of neurons in the hidden layer, the RMSE gets reduced during training whereas it increases 
during testing. This indicates the model is able to reproduce the results well on the independent test data 
as long as the number of neurons in the hidden layer is limited to five. Similarly the efficiency of the 
model is maximum during training and testing with five neurons in the hidden layer namely, 85.14% and 
84.42% respectively. Even though the efficiency of the model increases significantly during the training 
with the increase in the number of neurons in the hidden layer, but during testing it drops down to 
significantly lower values. The efficiency during training and testing with 15 neurons in the hidden layer 

is indicative of the fact. 
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7.3 Performance of the Model 

In the present study, based on the performance in representing the rainfall runoff process, the 
feed-forward neural network with five neurons in the single hidden layer was finalized. The comparison 
of the observed and simulated runoff during the training period from 1992 to 1998 is given in Fig. 7.5 to 
Fig. 7.10. It is observed that the model is able to simulate the flows reasonably well except for one peak 
flow in 1992 and another peak flow during 1997. This corresponding rainfall for those particular periods 
was checked. Overall the model was able to simulate the flows with a fair degree of accuracy. The model 
was tested on the independent test data from 1999 to 2001. The comparison of the observed and 
simulated runoff during the testing period from 1999 to 2001 is given in Fig. 7.11 to Fig. 7.13. The model 
trained with the input vector is able to simulate the flows with the independent test data with reasonable 
accuracy. 

The indicators of the model performance were also computed for the entire training set and 
testing set also separately for each year during the training and testing process. The performance of the 
three identified models for training as well as validation periods are critically examined using various 
statistical indices and are reported in Table 7.3. 

The optimal value for the correlation coefficient is 1.00. The model tends to have correlation 
coefficient of 0.923 and 0.926 during training and testing respectively which indicates that the model is 
able to reproduce the flows quite well. The correlation coefficient during testing and training is very 
similar and the difference is insignificant. The optimal value for the RMSE statistic, which measures the 
residual variance, is 0.0. 

The model tends to have smaller value of RMSE during training. The value of RMSE is found 
slightly deteriorating during validation. The optimal value for the percentage error in peak flow which 
measures the percent error in matching the maximum flow of the data record is 0.0 and positive values 
indicates overestimation whereas the negative values indicate underestimation. During training as well 
as testing the model matches the peak flow very well. The efficiency of the model as defined by Nash-
Sutcliffe criteria is a measure of the performance of the model in predicting the output values. According 
to this statistic, the model predictions were fairly good during training. The model efficiency during 
training and validation is 85.14 % and 84.42 % respectively. The efficiency of the model, root mean 
squared error, relative mean absolute error, relative bias and correlation coefficient during the 
corresponding years of training and testing is given in Table 7.4. It can be seen that the efficiency of the 
model is rather very poor during the training period of year 1997. Similarly, the RMSE and RMAE is 
maximum whereas the correlation coefficient is minimum for the year 1997. However the results during 
training are satisfactory. 

It is observed that the efficiency is minimum for the year 1997 whereas it is maximum for the 
year 1996. It was seen that during the monsoon season of 1997 a number of flood peaks have been 
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Fig. 7.5 Comparison of the observed and simulated discharge during training for 1992 

Fig. 7.6 : Comparsion of the observed and simulated discharge during training for 1993 
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Fig. 7.7: Comparison of the observed and simulated discharge during training for 1995 

Fig. 7.8: Comparison of the observed and simulated discharge during training for 1996 
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Fig. 7.9: Comparison of the observed and simulated discharge during training for 1997 

Fig. 7.10 : Comparison of the observed and simulated discharge during training for 1998 
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Fig. 7.12: Comparison of the observed and simulated discharge during training for 2000 
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Fig. 7.13: Comparison of the observed and simulated discharge during training for 2001 

observed and the model failed to predict the peaks correctly during the start of the monsoon season. 
Thereafter the model was able to simulate the peak flows with considerable accuracy. The correlation 
coefficient varies between 0.82 to 0.97 during training whereas it varies between 0.79 to 0.97 during 
training. Similarly the RMSE varied between 84.38 to 225.44 during training and varied between 157.73 
to 199.35 during testing with the independent test data. These results do indicate that the model is 
capable enough to simulate the flows with a reasonable degree of accuracy. Therefore it can be 
concluded that the selected model i.e. the feed forward neural network with back propagation algorithm 
having a single hidden layer with five neurons in the hidden layer is able to model the rainfall-runoff 
process in the Sindh river basin in a satisfactory manner. 
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8.0 CONCLUSIONS 

An attempt has been made to apply the artificial neural network techniques to develop a rainfall- 
runoff model for the Sindh river basin in Madhya Pradesh. The review of the literature indicates that the 
ANN methodology has been reported to provide reasonably good solutions for circumstances having 
complex systems that may be poorly defined or understood using mathematical equations, problems that 
deal with noise or involve pattern recognition and input data that are incomplete and ambiguous by 
nature. Earlier application of artificial neural networks in water resources revealed that the approach of 
neural computations was very effective in developing the required model, due to its various advantages. 
Therefore it was decided to apply the ANN to model the precipitation-runoff relationship in the Sindh 
river basin. Accordingly, the model based on feed- forward back-propagation ANN architecture was 
developed for the study area, to represent rainfall-runoff transformation. The architecture of the network 
was determined based on a trial and error procedure and after examining various goodness of fit 
statistics. An auto correlation and partial auto correlation analysis of the standardized daily flow series 

suggested that the flow at time 't' was highly correlated to previous two days flow. These parameters 
were included in the input vector of the network, apart from 2-days rainfall series prior to the day, at 
which the flow was to be predicted. The number of rainfall patterns in the input vector was finalized by 

cross-correlation analysis and then by trial and error. 

Statistical analysis was done on the performance of each model in estimating the runoff. The 
study revealed that a feed-forward artificial neural network with back propagation algorithm having a 
single hidden layer with five neurons in the hidden layer was able to model the rainfall-runoff 
transformation quite accurately. The correlation coefficient during the training and testing varies 
between 0.793 to 0.973 respectively whereas the model efficiency varies between 70.36 % to 94.57 °A 
with an overall efficiency of 85.14 % during calibration and between 63.02 % to 92.76 % with an 
overall efficiency of 84.42 % during validation. The study demonstrates that ANN can model accurately 
the non-linear relationship between rainfall and runoff and provides a systematic approach and 
shortened time spent on training of models compared to development and calibration of the conceptual 
models. Hence it is concluded that the feed- forward back propagation network model developed for 
rainfall- runoff process in the Sindh river basin might be employed for water resources planning and 
management in the basin. While such a model is not intended as a substitute for a physically based 
model, it can provide a viable alternative when the hydrologic application requires that an accurate 
forecast of stream flow be provided using only the available input and output time series data, and with 
relatively little conceptual understanding of the hydrologic dynamics of the particular basin under 
investigation. Although the artificial neural network technique has been applied to only one basin at 
present, the results presented here are encouraging and demonstrates a high potential for application of 
neural networks to various precipitation-runoff modelling scenarios. 

(39) 



REFERENCES 

Aboitiz, M., Labadie J. W., and Heerman, D. F., (1986). Stochastic soil moisture estimation and 
forecastingfor irrigationfields. Water resources research, 22(2):180 90. 

Aithen, A.P., (1973). Assessing systematic error in rainfall- runoff models. J. of Hydrol. 20, 121-136. 

Akaikc, H. (1974). A new look at the statistical model identification. 1 EEE transactions of automation 
and control, AC-19:716-723. 

Ambrus, S.Z., and Ward, R.J. (1990). A computerized real-time flood forecasting system on the Rideau 
River of Canada. Proc., 8" Int. Conf. on Computational Methods in Water Resour., 
Computational Mechanics, Southampton U.K., 243-250. 

Amrrocho, J., and Orlob, G.T., (1961). Non-linear analysis of hydrologic systems, Water Resources 
Center, University of California (Berkeley) U.S.A. Contrib. 40, 147 pp. illus. 

Amrrocho, J., and Brandstetter, A., (1971). Determination of non-linear function response functions in 
rainfall-nmoff processes. Water Resour Res. 7(5), 1087-1101. 

Anderson, J.A. (1995). An introduction to neural networks, MIT Press, Cambridge, Mass. 

Bastarache, D., El-Jabi. N., Turlckan, N., and Clair, T.A. (1997). Predicting conductivity and acidity 
small streams using neural networks. Can. J. Civ. Engrg., Ottawa, 24, 1030-1039. 

Bishop, C. M., (1994). Neural networks and their applications. Rev. Science Instruments., 65:1803-
1832. 

Box, G.E.P. and Jenkins, G.M., (1970). Time Series Analysis, Forecasting and Control, Holden-Day 
Press, San Francisco, California, USA. 

Brath, A., and Rosso, R., (1993). Adaptive calibration of a conceptual model for flash flood 
forecasting. Water Resour Res. 29 (8), 2561-2572. 

Burke, L. F., Ignizio, J.P., (1992). Neural networks and operations research: an overview. Computer 
operations research, 19(3/4), 179-189. 

Burnash, R.J.C., Ferral, R.L., and McGuire, A., (1983). A generalized stream flow system: Conceptual 
modeling for digital computers. Report, Joint Federal State River Forecast Center, National 
Weather Service, Sacramento, Calif: Department of Water Resources. 

Carpenter, W.C., and Barthelemy, J.F., (1994). Common misconceptions about neural networks as 
approximators. J. Comp. in Civ. Engg., ASCE, 8(3), 345-358. 

Carriere, P., Mohaghegh, S. and Gaskari, R., (1960). "Performance of a virtual runoff hydrograph 
system."J. Water Resour Ping. and Mgmt.,ASCE, 122(6), 421-427. 

Caudill, M., (1987). Neural network primer: Part I. At Expert, (December), 46-52. 

Chalcraborty, K., Mehrotra, K., Mohan, C. K. and Ranka, S., (1992). Forecasting of the behavior of 
multivariate time series using neural networks, Neural networks, 5:961-970. 

(40) 



Chander, S., and Prasad, T., (1981). Forecasting and Prediction of Floods, in: Indo-US Workshop on 

Flood Mitigation (New Delhi), (1981). 

Chander, S., Kapoor, P.N. and Natarajan, R, (1984). Newer Techniques in High Flow Range forecasting, 
Civil Engineering Department, Indian Institute of Technology, Delhi, (Indian National 
Committee the International Hydrological Programme). 

Chen, C.H., (1991). Neural networks in pattern recognition and their applications, World Scientific 

Singapore. 

Cheng, X., and Noguchi, M., (1996). Rainfall runoff modeling by neural network approach. Proc. Int. 
Conf. Water Res. Environ. Res. Vol. II, Oct. 29-31, Kyoto, Japan. 

Crespo, L., and Mora, E., (1993). Drought estimation with neural networks, Advances in Engineering 

Software, Vol. 993, pp. 167-170,. 

Dawson,C.W., and Wilby,R., (1998). An artificial neural network approach to rainfall- runoff modeling. 
Hydrological Sciences Journal, 43(1), 47-66. 

Dhar, V, and Stein R., (1997). Intelligent decision support methods, Prentice-Hall, Englewood Cliffs, 

N.J. 

Flood, land Kartam, N., (1994b). Neural Network in Civil Engineering-I, Principles and Understanding, 
Journal of Computing in Civil Engineering, ASCE, 8(2), 131-148. 

Flood, I and Kartam, N., (1994 a) Neural Network in Civil Engineering— Systems and Applications, 

Journal of Computing in Civil Engineering, ASCE, 8(2), 149-162. 

Freeman, J.A., and Skapura, D.M. (1991). Neural networks, algorithms, applications, and programming 
techniques. Addison -Wesley, Reading, Mass. 

French, M.N., Krajewski, W.F. and Cuykendall, R.R., (1992). Rainfall forecasting in space and time 
using a neural network, Journal of Hydrology, Vol. 137, pp. 1-31. 

Garrote, J.H. and Bras, R.L., (1995a). A distributed model real time flood forecasting using digital 

elevation models. Journal of Hydrology 167(1), 279-306. 

Garrote, J.}-I., and Bras, R.L. (1995b). An integrated software environment real-time used of a 
distributed hydrologic models. Journal of Hydrology., 167(1), 307-326. 

Gupta, V. K. and Sorooshian, S., (1985). The relationship between data and the precision of parameter 
estimates of hydrologic model. J. Hydra, 81,57-77. 

Haykin, S., (1994). Neural Network, A Comprehensive Foundation, IEEE Press New York. 

Hartman, E. J., Keeler, J. D., and Kowalski, J. M. (1990). Layered neural networks with gaussian hidden 

units as universal approximations. Neural computations, 2:210-215. 

Hecht-Nielsen, R., 1987. Counter-propagation networks. J. ofApplied Optics 26(3), 4979-4984. 

Hecht-Nielsen, R., (1990). Neurocomputing, Addison-Wesley Publishing Company, Reading, Mass. 

Hecht. Nielsen, R., (1989). Theory of the Backpropagation Neural Network. Proc. Int. Joint Conf. On 

(41) 



Neural Networks, IEEE, Washington D.C., Vol. 1, 593 - 605. 

Hertz, J., Krogh, A. and Palmer, R.G., (1991). Introduction to the theory of neural computations. 
Addison-Wesley publishing company, NewYork, pp: 246-250. 

Homik, K., Stinchcombe, M., While, H., 1989. Multilayer feedforward networks are universal 
approximators. Neural Networks 2,359-366. 

Hsu, K. L., Gupta, V.H., and Sorooshian, S. (1995). Artificial neural network tnodeling of the rainfall-
runoff process. Water Resour Res., 31(10), 2517-2530. 

Jain, S.K., God, M.K., Senthil Kumar, A.R. and Agarwal, P.K., (1996). Multiobjective optimization of 
operation of a dam. TR(BR)- 143, National Institute of Hydrology, Roorkee, India. 

Jain, S.K., Chalisgaonkar, D. and Goel, M.K., (1997). Software for reservoir analysis (SRA). UM-/196-
97, National Institute of Hydrology, Roorkee, India. 

Jain, S.K., Das, A., and Srivastava, D.K., (1999). Application of ANN for Reservoir Inflow Prediction 
and Operation. Journal of Water Resources Planning and Management, ASCE,125(5), 263-271. 

Jain, S.K. and Chalisgaonkar, D., (2000). On Setting up stage-discharge relations using ANN, Journal of 
Hydrologic Engineering, ASCE, 5(4), 112-121. 

Kao, J-J. (1996). Neural Net for Determining DEM-Based Model Drainage Pattern. Journal of 
Irrigation and Drainage Engineering, ASCE, 122(2), 112-12 1. 

Kang, K.W., Evaluation of hydrologic forecasting system based on neural network model, Proceedings 
ofIAHS Floods and Droughts, Japan (1993). 

Karunanithi, N., Grenney, W.J., Whitley, D. and Bovee, K., (1994). Neural networks for river flow 
prediction. J. Comp. in Civ. Engrg., ASCE, 8(2), 201-220. 

Kitanidis, P.K. and Bras, R.L., (1980). Real-time forecasting with a conceptual hydrological model. 
Applications and results." Water.  Resour Res., 16(6), 1034-1044. 

Konda, T. and Deo, M.C., (1998). River Stage forecasting Using Artificial Neural Networks, Journal of 
Hydrologic Engineering, VoL 3(1), 26— 31. 

Leaf, C.F. and Brink, G.E., (1975). Land use simulation model of subalpine coniferous forest zone. 
USDAForest Service Res. Paper RM- 135, U.S. Department ofAgriculture, Washington, D.C. 

Lippman, R.P., (1987). An Introduction to Computing with Neural Networks, IEEE ASSP Magazine, 4 — 
22. 

Lorrai, M., and Sechi, G.M., Neural nets for modeling rainfall runoff transformations. Water Res. 
Mgmnt., 9(4), 299-313. 

Maier, H.R., and Dandy, G.C. (1999). Empirical comparison of various methods for training feed-
forward neural networks for salinity forecasting. Water Resources Research, 35(8), 2591-2596. 

Maier, H.R., and Dandy, G.C. (2000). Neural Networks for the Prediction and Forecasting of Water 
Resources Variables: AReview of Modelling Issues and Applications. Environmental Modelling 

(42) 



& Software, 15, 10 1 - 124. 

Markus, M. and Baker, D., (1994). The Fraser River: Stream flow forecasting and simulation computer 
package. Tech. Rep., Northern Colorado Water Conservancy District, Loveland, Colo. 

Markus, M., Salas, J. D. and Shin, H., (1995). Predicting streamflows based on neural networks. 1." Int. 

Conf. On Water.  Resour. Engrg., ASCE, New York. 

Marren, A., Harston, C.., and Pap, R., (1990). Handbook of neural computing applications. Academic 

Press, Sandiego, CA. 

McCulloh, W.S., and Pitts, W., (1943). A logical calculus of ideas imminent in nervous activity. Bulletin 

of Mathematical Biophysics, 5, 115-133. 

Mehrotra, K., Mohan, C.K., and Ranka, S. (1997). Elements of Artificial Neural Networks, Penram 

International Publishing (India), India. 

Minai, A.A., and Williams, R.D. (1990). Acceleration of back-propagation through learning rate and 
momentum adaptation. Int. Joint Conf. Neural Networks. Lawrence Erlbaum Assoc., Hillsdale, 

N.J., Vol. 1,676-679. 

Minns, A. W., and M. J. Hall, (1996). Artificial neural networks as rainfall runoff models, Journal of 

hydrological sciences, 41(3): 399-417. 

Murtaza, M.B. and Fisher, D.J., (1994). Neuromodex- Neural network system modular construction 
decision making. J. Comp. in Civ. Engg., ASCE, 8(2), 212-233. 

Nash, J.E. and Sutcliffe J.V. (1970). River flow forecasting through conceptual models: 1.A discussion 
of principles. Journal of hydrology, 10: 282 -290. 

Nalbantis, I, (1995). Use of multiple-time-step animation in rainfall-runoff modeling. J. Hydro., 165(3), 

135-159. 

Raman, H. and Kumar, S., (1995). "Multivariate modeling of water resources time series using artificial 

neural networks," Hydrological Sciences Journal, 40(2), 145-163. 

Raman, H., and Chandramouli, V., (1996). Deriving a general operating policy reservoir using neural 
networks. Journal of Water Resources Planning and Management, ASCE, 122(5), 342-347. 

Rissanen, J. (1978). Modeling by short data description, Automation, 14:465-47 1. 

Romesburg, H. C. (1984). Cluster analysis for researchers. lifetime learning publications, Belmont., 

California. 
Roger, L.L., and Dowla, F.U. (1994). Optimization of groundwater remediation using artificial neural 

networks with parallel solute transport modeling. Water Resour. Res., 30(2), 457-481. 

Rumelhart, D. E., McLelland, J. L., and the PDP Research Group. (1986). Parallel distributed 
processing, explorations in the micro structure of cognition, vol. 1: Foundations. MIT Press, 

Cambridge, Mass 

(43) 



Rumelhart, D. E., and MeCielland, J., eds. (1986). Parallel distributed processing, Vol. 1, MIT Press, 
Cambridge. 

Rumelhart, D.E., Hinton, E., and Williams, J. (1986). Learning internal representation by error 
propagation in parallel distributed processing. MIT press, Cambridge, Vol 1: 318- 362. 

Sajikumar, N., (1998). Rainfall-runoff modeling in data scarce situation using artificial neural network, 
Ph.D. thesis, Department of Civil Engineering, Indian Institute of Technology Madras. Chetuni, 
India. 

Sajikumar, N., and Thandaveswara, B.S. (1999). A non-linear rainfall-runoff model using an artificial 
neural network. Journal of Hydrology, 216,32-55. 

Salas, J. D., J. W. Delleur, V. Yevjevich, and W. 1. Lane, (1988). Applied modeling of hydrologic time 
series, Littleton, Colarado, Water Resources Publications. 

Senthil Kumar, A.R., Jain, S.K., Goel, M.K., and Nema, R.K. (1997). Development of Operation Policy 
for Tawa Dam. CS(AR)-18/96-97, National Institute of Hydrology, Roorkee, India. 

Shemseldin, A. Y., (1997). Application of a neural network technique to rainfall-runoff modeling. J. 
Hydro., 199,272-294. 

Smith, J., and Eli, R.N., (1995).Neural network models of rainfall-ninoffprocess. J. Water Resour. Ping. 
and Mgmt., ASCE, 121(6), 499-508. 

Sorooshian, S., Gupta, V.K., and Fulton, J.I. (1983). Evaluation of maximum likelihood parameter 
estimation techniques conceptual rainfall-runoff models: Influence of calibration data 
variability and length on model credibility. Water Resour. Res., 19(1), 252-259. 

Sorooshian, S., Duan, Q., and Gupta, V.K.(1993). Calibration of rainfall-runoff models: Application of 
global optimization to the Sacramento soil moisture accounting model. Water Resour. Res., 
29(4), 1185-1194. 

Sudheer, KR, Nayak, P.C., and Mohan R.D., (2000). Rainfall runoff modeling using ANN techniques. 
CS/AR-16/1999-2000. National Institiute of Hydrology, Roorkee, India. 

Thandaveswara, B.S. and Sajikumar, N., (1999). Classification of river basins using artificial neural 
network, Journal of Hydrologic Engineering. ASCE (accepted for publication). 

Thirumalaih, K., and Deo, M.C., (1998). River stage forecasting using ANN. Jour. Of Hydologic. Engg, 
ASCE, 3(1),26-32. 

Tokar, A.S., and Markins, M., (2000). Precipitation runoff modeling using ANN and conceptual models. 
Jour. Of Hydrolo. Engg, ASCE, Vol.5, No. 2, 156-161. 

Werbos, P.J., (1990) Backpropagation through time: What it does and how to do it?. Proc. Of IEEE, 
79:1550-1560. 

(44) 



Wooishier, D. A. (1 996). Search for physically based rainfall runoff model - a hydrological El Dorado?, 
Journal of hydrologic engineering, 122: 122-129. 

Yang, C-C., Prasher, S.O., Lacroix, R., Sreekanth, S., Patni, N.K., and Masse, L. (1997). Artificial neural 
network model for subsurface drained farmlands". Journal of Irrigation and Drainage 

Engineering, ASCE, 123 (4), 285-292. 

Zealand, C.M., Bum, D.H., and Simonovic, S.P. (1999). Short Term Streamflow Forecasting using 
Artificial Neural Networks. Journal of hydrology, 214,32-48. 

Zhu, M.L., Fujitha, M., (1994). Comparison between fuzzy reasoning and Neural networks methods 
to forecast runoff discharge. J. Hydro. and Hydr. Engrg. 12(2), 133-141. 

(45) 



Table 5.1: Thiessen weights for Sindh river basin up to Madhilchera dam site 

Raingauge Station Area under influence 
(sq. km) 

Thiessen weight 

Mundrasagar 387.80 0.07 

Aron 1052.60 0.19 

Behtaghat 886.40 0.16 

Maina 332.40 0.06 

Khatora 1052.60 0.19 

Rannod 831.00 0.15 

Arnola 997.20 0.18 

Table 5.2: Runoff coefficients for Sindh at Madhikhera dam site 

Year Monsoon season 
rainfall (mm) 

Monsoon season 
runoff (mm) 

Runoff 
coefficient 

1992 559.8 373.65 0.667 

1993 826.2 563.29 0.682 

1995 751.1 451.30 0.601 

1996 1079.0 692.02 0.641 

1997 851.1 552.29 0.649 

1998 592.5 296.89 0.501 

1999 879.0 532.54 0.606 

2000 834.7 430.59 0.516 

2001 709.8 364.55 0.514 

(46) 



Table 7.1 : Goodness of fit statistics for the effect of rainfall lags in the input vector 

Network Rainfall pattern RMSE Efficiency (%) 

Training Testing Training Testing 

BPN with 
5 neurons 

Pi./,•••  Pt-2 150.90 173.08 85.14 84.42 

Pta,...  Pt.3 140.09 245.99 87.19 69.05 

Pi-1,...  Pi-4 136.91 256.98 87.76 66.78 

Po 136.98 311.16 87.75 52.02 

Table 7.2: Goodness of fit statistics for the effect of number of neurons in hidden layer 

No. of neurons in 
the hidden layer 

RMSE Efficiency (%) 

Training 
193.72 

Testing 
269.61 

Training 
75.50 

Testing 
62.20 2 

4 158.01 203.97 83.70 78.37 

5 150.90 173.08 85.14 84.42 

8 117.45 228.62 90.99 72.82 

10 11142 306.21 91.60 51.24 

15 100.10 342.57 93.46 38.98 

Table 7.3: Performance indicators of the selected model during training and testing 

S. 

No. 

Performance Indicator Training Testing 

 Correlation Coefficient 0.923 0.926 

 RMSE 150.90 173.08 

 % Difference in peak 1.335 % 0.319% 

 Efficiency 85.14% 84.42% 

(47) 



Table 7.4: Efficiency of the trained and tested model during 1992 to 2001 

Year Efficiency 
(%) 

RMSE RMAE Rel. Bias Correlation 
coefficient 

Training 
1992 69.59 114.11 0.395 -0.003 0.87 
1993 92.33 135.50 0.315 0.058 0.96 
1995 70.19 173.49 0.469 0.053 0.84 
1996 93.86 130.73 0.261 0.063 0.97 
1997 56.22 225.44 0.494 -0.140 0.82 
1998 86.63 84.38 0.361 0.089 0.94 

Testing 
1999 82.89 157.73 0.400 0.081 0.91 
2000 81.72 158.90 0.462 0.203 0.97 
2001 71.04 199.35 0.552 0.066 0.79 

(48) 
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