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ABSTRACT

Groundwater is one of the major source of water all over the world. Management

of this resource is very important to meet the increasing demand for domestic,
agricultural and industrial use. Various management measures needs to know the spatial
and temporal behaviour of groundwater.
Also most of the groundwater models require the input to be available on a grid pattern,
But in the field, these parameters are generally measured at random points. So,
interpolation of parameters at the grid nodes is a prerequisite to the use of this data in
groundwater modelling.

Interpolation of ground water levels is of significant importance in agricultural and
hydrologic contexts. Water recharged into ground water is of prime importance in
agriculture as it can be conveniently tapped during the dry season. However, if the water
table rises to the root zone depth, so as to adversely affect the yield of the crop, the land
is said to be waterlogged.

A variety of interpolation techniques are in use. The most widely used methods
in this context are polygonal methods, triangulation methods, isoline methods and kriging
techniques. Polygonal methods are based on the principle of Voroni neighbourhood,
wherein, the magnitude of the entity at the point under consideration is the same as that
at the geometricaily nearest measured point, The main drawback in such a scheme is the
spatial discontinuity in the concept. Triangulation methods overcome this drawback by
considering spatial continuity on the plane generated by the magnitudes of the entity and
these observation points. In the isoline method, isolines for the entity are drawn using
linear interpolation techniques. Various studies (Vieira et al, 1981; Yost et al, 1982;
Knighton and James, 1985; Dahiya et al, 1986: and Laslett et al, 1987) have shown that
kriging performs better than the other above mentioned methods,

In this report, an application of kriging technique is shown to interpolate the

groundwater levels as measured in Sagar District of Madhya Pradesh.



1.0 INTRODUCTION

All over the world, groundwater is one of the major sources of water. However,
the dynamics of groundwater is affected by a number of natural and anthropogenic
factors. Prominent amongst the latter are manmade storage projects, withdrawal of
groundwater, urbanisation projects, mining projects etc,

Appropriate management measures can reduce the undue building up or depletion
of groundwater. Some of the management measures may be in the form of restraints on
the user, while some may be in the form of engineering measures. To be sound and
acceptable, both these methods need reliable quantitative information on groundwater
behaviour, That is to say, estimation of the likely water levels, at various locations in
space and time, the annual recharge/depletion potential, the flow direction etc are the
basic inputs on which management measures must be built on. There exists a need to
study the spatial and temporal behaviour of groundwater.

With the advent of high speed computers, which can handle large volume of data
easily, more and ‘more distributed models are becoming available. Results of these
modelling attempts are only as good as the input information, According to Muylla (1988),
a major ongoing challenge to watershed modelling is to treat the spatial variation in soil
factors more quantitatively, and reduce the extent of spatial averaging that is implicit in
the present models. According to Rehfeldt et al (1992), a means of quantifying the spatial
variability, for example of aquifer hydraulic conductivity which controls the movement
and dispersion of groundwater solutes, at a reasonable expense is essential for the
application of solute transport models to practical problems. Selection of the correct

resolution in these modelling at the watershed scale is also essential in reducing scale



reiated errors (Farajalla and Vieux, 1995).

Presently, observed groundwater levels serve as one of the main input data in
studies related to groundwater simulation, water batance, groundwater recharge potential,
groundwater estimation and in the design of drainage structures. Of the various
measurement practices, measurement of groundwater level is the simplest and the most
economical. However, these measurements are generally carried out randomly in the
field, Most of the groundwater models requires these measurement at a prespecified grid.
So, there is always a need to interpolate the measured parameters at the grid points,

A variety of interpolation techniques are in use. The simplest methods, arithematic
mean method, nearest neighbour method, distance weighted method, and polynomial
interpolation uses distance between data points to relate the change in the magnitude of
the entity. However, geophysical atiributes exhibit some spatial structuring (Delfiner and
Delhomme, 1975; Huijbregts, 1975). This spatial structure, if deciphered and
incorporated in model building, can improve the quality of interpolation (Sabourin,
1983). Geostatistics, a set of statistical techniques , is such a technique which takes into
consideration the spatial structure and so scores over the other methods.

Geostatistical technique was used to study the spatial variability of groundwater depth
data by Dahiya et al (1986). It was concluded that these contour maps could serve as a
better background for making appropriate decisions in the management of groundwater
in the area.

Spatial variability of infiltration rate was studied by Vieira et.al, (1981} using
geostatistical technique. In this study it was concluded that contour map obtained using

kriging technique showed a smooth geographical pattern of infiltration whereas contour



map by polynomial interpolation, showed abrupt changes.

Yost et al (1982) have found that the kriged map of soil P sorption corresponds more
closely with known soil behaviour than did the spline map.

Knighton and James (1985) applied geostatistics to study the spatial variability of soil
test phosphorus (STP) and concluded that Kriging performed better than fifth order
bivariate polynomial.

Laslett et.al. (1987) compared the performance of several two-dimensional spatial
prediction methods for predicting soil pH. The methods compared were global means and
medians, moving averages, inverse squared distance, Akima’s interpolation, “natural
neighbour interpolation, quadratic trend surface, Laplacian Smoothing splines and
ordinary Kriging. Laplacian smoothing splines and Kriging were found to generally
perform best.

Di et.al. (1989) has concluded that geostatistical approach is more efficient (in terms
of number of samples) than conventional statistical methods in designing sampling
strategies.

Gallichand and Marcotte (1993) compared the accuracy of estimation for soil clay
content using different spatial interpolation methods and found that geostatistical
techniques performed better than other interpolation methods.

-In this report, kriging, (Journal and Huijbrets, 1978; Devi and Kumar; 1994,
1995; Oleo, 1974), a type of geostatistical technique is applied to interpolate the

groundwater levels as observed in the Sagar district of Madhya Pradesh, India.



2.0 METHODOLOGY

Geostatistical technique is used in this report to interpolate the groundwater level
data. A brief theory of the techniqué is given in the following pages.
2.1 Geostatistics

According to Matheron (1963) "Geostatistics is the application of the formalism
of random functions to the reconnaissance and estimation of natural phenomena”, It can
be described as a systematic approach for making inferences about quantities that vary
in space. Geostatistics is based on the Theory of Regionalized Variables.

When a variable is distributed in space, it is said to be “regionalized” (Journel and
Huijbregts, 1978). A Regionalized Variable (ReV) is defined by Matheron (1963) as the
variable that spreads in space and exhibits certain spatial structure. Such variables show
a complex behaviour, Their variations in space are erratic and often unpredictable from
one point to another; however, these are not completely random as these exhibit some
spatial correlation. So, a ReV is simply a function of space, but generally a very irregular
function. All the parameters generally used in groundwater hydrology, such as
transmissivity, hydraulic conductivity, piezometric heads, precipitation, vertical recharge
etc. can be called regionalized variables.

A ReV possesses two contradictory characteristics (Journe! and Huijbregts, 1978),
2 local random, erratic aspect and a general structural aspect. This twin aspects of
randomness and structure have been taken into account in the theory of regionalized
variable by considering it to be based on probabilistic theory of random functions. A
random variable (RV) is a variable which takes a certain number of numerical values

according to certain probability distribution (Journel and Huijbregts, 1978).



Let Z be a propetty of the aquifer, say the piezometric level; then, Z(x) is defined
as a random function (RF) where x represenis the coordinates in 1,2, or 3 dimensions.
z,(x) is called a realization of Z(x). The function Z can have an infinite number of
realizations 1.e, z,(x), z,(x), Z3(X)......

Some assumptions are introduced to develop a working model that can be used for
estimation purposes. These assumptions are
® The RF Z(x) exhibit some kind of stationarity,
® The RF Z(x) is ergodic.

In linear geostatistics, only the first two moments of the RF are used and 80, it
is sufficient to assume the second order stationaritity. These conditions implies that
variance exists and is finite. In practice, this assumption is restrictive. So, the second
order stationarity hypothesis can be relaxed and a weaker hypothesis, known as Intrinsic
Hypothesis, can be considered.

This hypothesis assumes that the first order increments of the RV’s are themselves
second order stationary i.e. for any two RV’s, Z(x) and Z(x +h), separated by a distance
h, the increment Z(x+h)-Z(x) has zero expectation and a finite variance which is
independent of the point x. The variance of the increment defines a new function knewn

as Variogram i.e.

E {Z{(x+h) - Z{x)} = 0 (1
and
Var (Z(xh) -~ Z()} = E {[Z+h) - ZWP) = 2y(k) @



where,

2~(h) is defined as the Variogram,

~y(h) is known as semivariogram.

A system which satisfies the stationarity of order two, also satisfy the intrinsic
hypothesis, but the converse is not true.

The estimator 2y(h) is the arithematic mean of the squared difference between two
experimental measures, (Z(x,) ar‘\:i Z{(x,+h)), at any two points separated by the vector

h. For a set of N sample values, I

Ny

2y°(h) = m E [2(x) - z(x; +h)]2 &)

Where,
N(h) is the number of experimental pairs separated by vector h in the data.

The semivariogram is calculated as

NeR)

Y'(h) = E () - zGxsh)f )
2N(h)

A plot of +'(h) versus the corresponding value of h, also called the
semivariogram, is thus a function of the vector h, and may depend on both the magnitude
and the direction of h. A sample plot of semivariogram is shown in Fig. 1.

The distance at which the variogram becomes constant is called the range, a. The

value of the semivariogram at a distance equal to the range is called the sill. This, value
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is simply the a prior variance of the RF. Semivariograms may also increase continuously
without showing a definite range and sill. Such types either correspond to RF which are
only intrinsic or indicates the presence of non-stationarity. The value of the
semivariogram at extremely small separation distance is called the nugget effect.

The behaviour of the semivariogram near the origin and at infinity are two other
important features of the semivariogram as these express the qualitative characteristics
of regionalization (Matheron, 1963).

Behaviour near the origin characterizes the continuity of the ReV. The regularity
of ReV is represented by the more or less regular behaviour of y(h) near the origin.
Examples of the four classical types of behaviour are shown in Fig. 2. Fig. 2(a) has a
parabolic shape near the origin and presents a ReV with high continuity such a the head
in a deep observation well as a function of time. (Delhomme, 1978). Linear shape (Fig.
2(b)) represents a ReV which has an "in average” continuity. Discontinuity at the origin
corresponds to a variable presenting not even an "in average” comntinuity (Matheron,
1963). Two distinct points at a very close distance will also show a difference. Fig. 2(c)
shows this nugget effect, Fig. 2(d) shows a pure nugget effect and it is the limit case
when the semivariogram appears solely as a discontinuity at the origin (Journel and
Huijbregts, 1978). It corresponds to a total absence of auto correlation and hence pure
random behaviour.

The semivariogram increases more slowly as lag distance *h’ tends to infinity. An
experimental semivariogram, which increases at least as rapidly as |h|* for large ‘h’ does
not hold the intrinsic hypothesis and indicates non-stationarity (Journel and Huijbregts,

1978).
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The semivariogram, given in Eq.3 is also termed the true semivariogram of the
ReV. As only one realization of the RF is available, the true semivariogram can only be
estimated. and this estimate is known as the experimental semivariogram.

If the sampling is done on a regular grid, the 4'(h) may be estimated for values
of h, known as lag distance or lag increment which are multiples of the grid spacing.
This situation is rare in practice, particularily in the context of groundwater and the
chance of finding pairs at exactly same specified distance h is very small. To overcome
this, a tolerance, dh is placed on the distance. Every pair of observations that are
separated by a lag h+8h/2 are then used to estimate y'(h).

The above procedure, is used for calculating the isotropic experimental
semivariogram, also known as omnidirectional semivariogram. In this case, it is assumed
that the variation is the same in every direction. To find the anisotropies, the
semivariograms are calculated in different directions. To do this, a tolerance, 80, is
placed on the directional angle.

The exXperimental semivariogram has discrete values and irregular shape due to
the limited sampling. A mathematical function used to approximately represent this
semivariogram is known as the theoretical semivariogram. The process of fitting a
theoretical model to experimental semivariogram is called structural analysis. This
process is the first and most important step in the geostatistics as it affects the final
results.

For any function to be a valid function for a semivariogram, it should meet the
positive definite condition. It is safe to use only those functions which are tested and are

used in literature. These functions are varied enough to enable a satisfactory fit to all



sample variograms likely to be encountered in practice. Some of these models are

discussed below.

Spherical model :- (Fig. 3(a))
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Exponential model :- (Fig. 3(b))

Y() = Cyll - 8(h)] + C[l - exp(- 2
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Gaussian model :- (Fig. 3(c))

¥(h) = Co[l - 8(h)] + C|1 - exp(- ;;;)

Linear model :- (Fig. 3(d))

V() = Cf1 - 5(®)] + bh

10

“4)

)

©)

4



1.0_.......‘__...?_ 10k = == e e e -

|
! i
l | i
| I ( |
i [ z I |
z oo = | l
i | { |
1 I | i
I ( | |
] i i :
H - - ! l -
0 26/ a 0 a Jo
h h
{a) SPHERICAL {b) EXPONENTIAL
i
10— = = o
095/~ = — — ~ = =
|
'
)
I z
[ bt
= i
Pt |
!
I
|
I
i
1 1 -
0 a as3 1] \
h h
{c) GAUSSIAN {d) LINEAR

FIG. 3 THEORETICAL MODELS OF SEMIVARIOGRAM

11



Where,

1
&(h) is the Kronecker delta= {O

C, is the Nugget effect
C,+C is the Sill

and a is the Range and b is the slope at the origin.

2.2 Kriging

According to David (1977), kriging, a technique developed by D.G. Krige for
application in South African gold mines, covers both the best linear unbiased estimator
(BLUE) at a point and the best linear weighted moving average of a block. It is a
technique of making optimal, unbiased estimates of regionalized variables at unsampled
locations using the structural properties of the semivariogram and the initial set of data
values. Kriging can be applied to estimate the value of a variable at a particular point,
(Punctual Kriging) or to estimate the average vaiue of a block (Block Kriging). In
punctual kriging, by changing the position of the point, it is possible to estimate the
whole area of interest.

Consider a situation in which a property is measured at a number of points, x; ,
within a region to give values of z(x;), i=1,2.3,....N. (x; is the coordinate of the
observation point in 1, 2 or 3-dimensional space). From these observations, the value of
the property at any place x, can be estimated. The place might be a ‘point’, i.e. an area

of the same size and shape as those on which measurements were made, or a larger area

i2



or block. Such situations commonly arise in hydrology. For example, in the estimation
of rainfall, temperature, sunshine; in the estimation of hydrological parameters such as
transmissivity, piezometric head, solute concentration in a plume etc.

Linear geostatistics estimates the kriged value of z at x as the weighted sum of

the measured values i.e. for point estimation.

N
') = Y Azlx) 123N ®
i=1

where,

z'(%;)} = estimated value at x,

A, = weights chosen so as to satisfy suitable statistical conditions

z(x)) = observed values at points x,

Apart from providing the estimate of a property, geostatistics also provide the
estimation variance which measures the accuracy of the estimate.

By taking z(x) as a realization of the random function Z(x;) and so z(x,} as the
realization of Z(x,), the Eq.8 can be written as

N _
Zx) = L AZK)  i=1,23,.N 9
i=1

In kriging, the weights ), are calculated so that Z'(x,) is unbiased and optimal.

E{Z'(x) - Z(x)} = 0 (10)

13



The condition of optimality means that the variance of the estimation error should

be minimum i.e.

Var|{Z () - Z{xo)} = minimum 1y

substituting Eq.9 into Eq.10 leads to

N
PIRIES (12)

for stationarity of order-2. The estimation will be unbiased if the Eq.12 will hold,
Substitution for Z*(x,) in the minimum variance condition and rearrangement of
resulting terms in terms of y(h) and (0} yield :
N N N
E{[Z7) - z(x[,)]z} =-¥ 21: Ady(x,x) + 221: A ¥ (%) 13)

i=L

The Eq.13 is a quadratic function of the weights A, The minimization of the
above function, subject to the linear constraint of Eq. 12 is found using the Lagrange

multiplier, u and taking the partial derivatives for all ), i.e.

%E{ Z°() - Z)f] - 2 zl: A - 1] =0 (14)
Where,

# = Lagrangian multiplier

14



On simplification of Eq. 14

N
2;21‘ Ay(x,x) « 2¥(xxg) - 2u = 0 (15)

Rearranging and combining with Eq. 12 results in the kriging system equations.

M=

Aj'y(xj,xj) + o= v (x,x) i=1,2,3,...N

[
i
Y

(16)

M =
o

H

(=)

~
il
-

Substitution of Eq. 16 into Eq.13 yields the estimation variance, 6,2(x,} at x,, as:

N
ol = 3 Av(xx) e n

i=1

Selution of the above set provides the values of A, which can be used for
estimation.

The kriging technique developed for the estimation of non-stationary ReV is called
universal kriging. There are many other variations in kriging such as cokriging and
disjunctive kriging. However, there are not used in the present study, and hence are not
presented herein.

The validity of all the assumptions used in kriging is checked using cross

validation tests. These tests are also useful to choose the best model from the candidate

15



models. A method known as cross-validation (also termed as Jjackknifing) is used. In this
method, kriging is performed at all the data points, ignoring e- " one of them in turn one
by one. Statistical analysis of the kriging errors and the standardized errors, also known
as reduced errors, is carried out to verify that there is no systematic over or under
estimation and the errors are consistent with we corresponding standard deviations. The
following four tests are generally performed.

a) For the estimates to be unbiz_ed. The average kriging error (or mean error, ME) must

be close to zero
1 ¥
ME = 3 [°() - 2x)] = 0 (18)
i=1

where,
ME = the average kriging error
z'(x) = the estimated value of x,
z (x;) = observed value at x;
N = Number of observation points
b) Mean square error must be minimum. This error provides an overall effective measure

of the accuracy of the model,

N
%E o) - z(x)F = Minirmum (19)
i1

¢} The mean of reduced errors (kriged reduced mean error, KRME) must be close to

Zero.

N
KRME = = %" {[7°() - 2(x))/o,} ~ 0 20}
i1

2|~

16



where,
oy = kriging standard deviation at point x,
d) Variance of the reduced errors (kriged reduced mean square error, KRMSE) must be

close to one

N
KRMSE = %}; {E@) - 2ot} ~ 1 @1)

where,
o’y = kriging variance at point x,
The last two tests verify the theoretical consistency of the selected semivariogram

model.
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3.0 STUDY AREA

Sagar district (Fig.4), having a geographical area of 10,23 lakhs hac, falls in the
state of Madhya Pradesh between 78°00" to 79°16" East longitude and 23°10* 10 24°19"
North latitude covering Survey of India toposheet No. 54L, 54F, 551, and 55M. Out of
the 10.23 lakh hac land, the district has a culturable land of about 7.29 lakh hac,

The area enjoys a pleasant climate in the subtropical climate zone. Moderate to
extreme heat is observed during the summer season in the area. The mean maximum
temperature varies from 40°C to 42°C, while mean minimum temperature varies between
11°C to 8°C. The area is influenced by south-west monsoon. The rain starts from mid
of June and goes upto mid of October, The mean annual rainfall for Sagar station is
1215.7 mm.

The area falls under Bundelkhand plateau as per broad physiographical
classification. The physiographicaily the area falls under Piedmont plain pediment,
longitudinal ridgeé and flood plain, The topography of the area is rolling to undulating
with plain, The land slope is characterised by flat topped hillocks. This topography is a
result of the variation in hardness of different flows, The hard portions forming the top
of the terraces and hillocks, the soft part are eroded away,

Due to roiling and undulating topography, the upland area is having excessive
surface drainage which has resulted in severe loss of surface soil and hence expose the
Pbarent material. The soils removed from uplands get accumulated on the valley land, The
valley lands are moderately to poorly drained, The natural drains are iimited in number

and the dratnage density is low. The uplands have a dendetric drainage pattern,

18
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Sagar has been mapped under lower and upper Vindhyan system in the map of
geological mineral map of Madhya Pradesh. The important rock formation occurring in
the area are Vindhyan sand stone, Quartizitic sand stone, lime stone and Deccan trap
called basalt. Basalt rocks overlie the Vindhyan sand stone. Lower Vindhyan are
represented by quarzitic sand stone and shales where as upper Vindhya consists of sand
stone and shales with subordinate limestone. Lameta limestone is also found in lower
reaches. This basic rock formation mainly governs the soil characteristics of the
watershed area.

The major part of the area is occupied by basaltic rocks belongs to middle
Cretaceous to lower Eocene. Inthis basaltic terrain out crops of quartzite sandstone occurs
as intens and these belong to the Rewa group of the Vindhyan super group. The other
formations which are found in the area are Lametas and Bijawar.

The soils of the area have been derived from basaltic parent material and are
classified under medium black soils under broad classification of Indian soils. Alluvium
is also found in the area along the streams and river banks. The area falls in
predominantly mono-cropped area, Rabi being the principle crop season. The main crops
grown in the area Wheat, Gram, Masoor, Jawar, Makka eic.

The area comes under the major east Yamuna Basin and subbasins of river Bewas,
Dhasan and Sonar. The river Bewas, Dhasan and Sonar are the main rivers in the area.
These rivers are perennial in nature but the discharge decreases considerably during the
summer season. There are many small perennial and non-perennial streams which drain
the surface water of the area to main rivers during the monsoon. There is one reservoir

known as Bila reservoir in the Shahgarh block.

20



Groundwater in the area occurs generally under water table conditions. The main
natural recharge to the groundwater in the area is from precipitation, influent seepage
from streams during rainy season and seepage from small tanks, with maximum
contribution from rainfall.

Groundwater survey work in the district was started by M., P, state Groundwater
surveying Department, unit Sagar, in the year 1973. Initially 50 permanent observation
wells were selected in the whole district scattered in different blocks and in different
formations of geology. From the 1985, 50 more observation wells were selected. Now
the static water level of 100 wells is recorded. The data used in this report has been

collected from the above said department,
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4.0 RESULTS AND DISCUSSION

The methodology described above has been applied to the groundwater level data
of Sagar district of Madhya Pradesh (India).

Fig.5 shows the location of the observation points (for which groundwater level
data is available) for premonsoon of 1995, with the number identifying well identity. The
total number of observations wells set up are 100, but for this study only 90 wells are
used as only on these points water level data was available due to the various reasons;
namely, nonavailability of topographical level of some observation points, nonrecording
of data at some wells in that year etc. The groundwater elevation at each of the
observation point is calculated by subtracting the depth to groundwater from the
topographic elevation of corresponding observation point. The basic statistics, pertaini'ng
to the data, such as the mean, variance, coefficient of variance (CV) and minimum and

maximum value of the observed groundwater levels are shown in Table 1.

Table 1 Basic statistics of data set

Sr. No, | Parameter units Quantity
1. No. of data - 90
2 Mean meter 448.70
3 Variance meter? 2169.83
4, Coeff. of Vari - G.10
5 Minimum value meter 342,87
6 Maximum value meter 579.85

22



Fig. 5. Location of Observation Points
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4.1 Semivariogram analysis

Omnidirectional semivariogram is calculated for premonsoon period for the' year
1995. As the observation points are not uniformly distributed in the study area, tolerance
is introduced in distance. A lag distance of 7.5km and a distance tolerance of 3.75km are
used to calculate the experimental omnidirectional semivariogram and the same is shown
in Fig.6.

The shape of the experimental semivariogram shows the presence of nugget effect,
sill and range. Structural analysis is carried 6ut on this semivariogram with a lag distance
of 75km. The shape of the semivariogram, shown in Fig. 6, indicates that spherical,
exponential, and gaussian model can be fitted to it. Weighted least square error method
was used to fit these models. The parameters of the fitted models are shown in Table 2.

The experimental and fitted semivariogram are shown in Fig. 7.

Table 2. Fitted Parameters of Different Models

Sr. No. | Model C, C a Standard Error
1. Spherical 0.0 32445 75.5 181.9
2. Exponential 0.0 6183.0 87.25 |244.1
3. Gaussian 307.6 2906.8 3625 (1254

4.2 Cross validation

To check the validity of all the assumptions made in the development of
theoretical model and the estimation of model parameters, cross validation is carried out
on the data. The different model with above parameters for cross validation. Results of

Jackknifing procedure (in which the values are predicted in turn at all the known
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observation points using &ll the data points except the one point at which prediction is
being made) for the data are given in Table. 3.

Table 3 Cross validation result

Sr. No. Parameter Model
Spherical Exponential Gaussian
1. ME 0.458 0.629 -0.115
2. KMSE 21.658 21.889 23.01
3. KRMSE 0.971 0.901 1.279
4. KRME 0.005 0.01 -0.016

The cross validation results shows that for all fitted models the mean error (ME)
is very near to zero, root mean square error (RMSE) is very low as compared to the
standard deviation of_ the data i.e. 46.58 m, kriged reduced mean square error (KRMSE)
is near to 1, and a kriged reduced mean error (KRME) is near to zero. The above cross
validation results show that the chosen models and their parameters are adequate.

The cross validation results also shows that for the spherical model, The KRMSE
is very near to one. All other three parameters by spherical model are also comparable
to parameters of other models. So, the spherical model was chosen as the final model to

be use in kriging.

4.3 Kriging
For interpolated estimation of groundwater level at any unsampled location,
kriging can be applied. The study area is divided into a square grid of 25 km and

groundwater levels are estimated at each of the grid nodes using the finally selected
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spherical model. These estimated level values are used with the SURFER software to

draw the contour maps. The contour map of the groundwater levels so obtained are

shown in Fig. 8.
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FIG.8 KRIGED GROUNDWATER LEVEL CONTOUR MAP.
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5.0 CONCLUSIONS

Interpolation of ground water levels is of significant importance in agricultural and
hydrologic contexts. A variety of interpolation techniques are in use. In this study,
kriging, a type of geostatistical techniques, is applied to the groundwater level data of
premoisoan period of 1995 in the Sagar district of Madhya Pradesh. The spherical model
is found to the best model representing the spatial variability of groundwater level data.

The groundwater levels are found to be related upto a distance of 75km.
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