CS(AR) - 188

HEC-1 APPLICATION TO HAMIDNAGAR SITE

NATIONAL INSTITUTE OF HYDROLOGY JALVIGYAN BHAWAN ROORKEE - 247 667 1994-95

PREFACE

A catchment model describes relevant phases of the hydrologic cycle with the objective of simulating the conversion of rainfall into runoff. Much efforts have been devoted to the development of methods to relate streamflow and rainfall for use in hydrologic analysis. The HEC-1 is a well known hydrologic model whose component characteristics, features and algorithms are familiar. It has been designed to simulate the response of flood events of a watershed to precipitation events. The model simulates the rainfall-runoff process as it occurs in a river basin.

The river Punpun is one of the important right bank tributary of the river Ganga. It joins the river Ganga near Fatwa about 25 Kms. downstream of Patna, covering a total distance of Kms. In the present study, Punpun basin upto 232 area Hamidnagar(3314 sq.km.) has been considered for rainfall-runoff simulation using HEC-1 model. The HEC-1 model provides a powerful optimization technique for estimation of some of the parameters when gauged precipitation and discharge data are available. The optimization technique of the model has been utilized in the present study and model parameters have been calibrated and validated for the study area. The Clark method for unit hydrograph development, Initial and constant loss rate method for losses, and an empirical method for base flow separation were used in the analysis. The relevant input data have been collected

from various sources and computer programs were developed for simple calculations.

The study has been carried out by Sri Ramakar Jha, Scientist'B', Sri M.Arora, S.R.A. under the guidance of Dr.K.K.S.Bhatia, Scientist 'F' and Head, Ganga Plains Regional Centre, Patna. Thanks are due to Sri R.D.Singh Scientist 'E', National Institute of Hydrology, Roorkee for his valuable suggestions. The co-operation of Hydrology Cell, Water Resources Department, Govt. of Bihar for this study is highly appreciated. The assistance by Sri Sivadas, A.K. and Santosh, M.B. are acknowledged.

(S.M.S

DIRECTOR

CONTENTS

	PA	GE	NO
	List of Figures	i	
	List of Tables	i i	
	Abstract	1	
1.0	INTRODUCTION	2	
2.0	THE RIVER SYSTEM	5	
3.0	DATA COLLECTION AND PROCESSING	11	
	3.1 Rainfall data	11	
	3.2 Gauge & Discharge data	15	
	3.3 Topographic data & other ancillary data	15	
4.0	METHODOLOGY	16	
	4.1 Initial & Constant Loss-rate computation	16	
	4.2 Time-area curve development	17	
	4.3 Base flow separation	18	
	4.4 Clark method	18	
	4.5 Calibration & Validation of the Model Parameter	18	
	4.5.1 Calibration	18	
	4.5.2 Validation	25	
5.0	CONCLUSIONS	34	
6.0	RECOMMENDATIONS	35	
	REFERENCES	36	
	APPENDIX	37	

LIST OF FIGURES

FIGURE	TITLE	PAGE NO.
1.	Index map of Punpun basin	6
2.	The study area upto Hamidnagar	7
3.	Topographical map	9
4.	Geological map	10
5.	Developed Thiessen Polygon	13
6.	Concentration time estimation	19
7.	Computed Isochrones	20
8.	Time-Area curve	21
9.	Observed and optimised hydrograph for the storm of July 17,1979	22
10.	Observed and optimised hydrograph for the storm of July 27,1982	23
11.	Observed and optimised hydrograph for the storm of July 28,1983	24
12.	Observed and optimised hydrograph for the storm of Aug 8,1984	25
13.	Observed and optimised hydrograph for the storm of Aug 4,1986	26
14.	Comparision of observed with computed hydrograph for the storm of Aug 7,1982	27
15.	Comparision of observed with computed hydrograph for the storm of Aug 30,1982	28
16.	Comparision of observed with computed hydrograph for the storm of July 23,198	29 4

..

(1)

LIST OF TABLES

TAB	LE	TITLE	PAGE	NO.
	1.	Rainfall data availability for raingauge stations	12	
	2.	Theissen weights for raingauge stations	14	
	3.	Data for Time-area diagram	22	
	4.	Storm events used for calibration and validation of the model	24	

ABSTRACT

Surface runoff occurs when rainfall intensity exceeds the abstractive capacity of the catchment. Eventually, large amount of surface runoff concentrate to produce large flow rates referred to as floods. The HEC-1 model has been designed to simulate the response and flood events of a basin to precipitation events. The model simulates the rainfall-runoff process as it occurs in a river basin. Mathematical relationships are intended to represent individual meteorological, hydrological and hydraulic processes encompassing the rainfall-runoff phenomena.

In the present report, HEC-1 model has been used for rainfall-runoff simulation and estimation of flood events in the Punpun basin upto Hamidnagar. The components of the HEC-1 model simulates the rainfall-runoff process as it occurs in the river basin. Calibration of the model parameters has been performed by the mathematical optimization algorithm included in the HEC-1. The initial and constant loss rate technique for losses, Clark technique for unit hydrograph and a empirical equation baseflow separation were utilized for optimization, calibration and validation of the model parameters. Fairly good results have been obtained by using calibrated model parameters.

1.0 INTRODUCTION

The river basin is represented as an interconnected system of hydrologic and hydraulic components. Certain applications of a river basin may require complex analysis involving temporal and/or spatial variations of precipitation, hydrologic abstractions and runoff. Typically, such analyses involve a large number of calculations and are therefore suited for use with digital computers. The use of computers in all aspect of hydrology has led to increased emphasis on catchment modelling. Catchment modelling comprises the integration of key hydrologic process into a modelling entity. i.e a catchment model for purpose of either analysis, design, long-term runoff volume forecasting, or real-time flood forecasting.

A catchment (watershed or river basin) model is a set of mathematical abstractions describing relevant phases of the hydrologic cycle, with the objective of simulating the conversion of precipitation into runoff. In principle, the techniques of catchment modelling are applicable to catchment of any size, whether small (a few hectares), mid-size (tens of square kilometers) or large (many thousands of square kilometers). In practice, however, catchment modelling application are generally confined to the analysis of catchments for which the description of temporal and/or spatial variations of precipitation is warranted. Usually this is the case for midsize and large catch-

ments.

A typical catchment modelling application consists of the following : (1) Selection of model type, (2) model formulation and construction (3) model testing and (4) model application. Comprehensive catchment models include all relevant phases of hydrologic cycle and, as such, are composed of one or more techniques for each phase. Commonly used methods and techniques for hydrologic modelling are (1)HEC-1, (2)TR-20 (3)SWMM (4)SSARR, (5)SWM & (6)Sacramento model. In practice, the hydrologic engineer would either (1) select an available model, with knowledge . of its structure, operation, capabilities, and limitations or (2) develop a model or modify an existing one, based on perceived needs, data availability, and budgetary constraints.

Most of the applications are of first type, in which case it is necessary to become thoroughly familiar with the model's characteristics and features. During the past ten years, much effort has been devoted to the development of methods to relate streamflow with rainfall for use in hydrologic analy : sis(Feldman,1981; HEC,1981; HEC,1982; Sastri and Seth, 1984; NIH, 1991; Jain and Sastri, 1991). The HEC-1 model, developed by Hydrologic Engineering Center (HEC) of US crops of Engineer, is a well known hydrologic model whose component characteristics, features and algorithms are familiar.

The HEC-1 is a Flood Hydrograph Package specifically designed to be used for the simulation of flood events in watershed and river basins. In the HEC-1 model, the transformation of rainfall excess to stream flow is accomplished either by unit

hydrograph or by kinematic wave routing procedure. A variety of procedures can be used to calculate watershed interception and infiltration referred to as loss rate. The precipitation (rainfall, snowfall/melt) to run-off process can be simulated for large complex watersheds. In the present study, HEC-1 model has been used for the simulation of flood events of Punpun catchment upto Hamidnagar.

2.0 THE RIVER SYSTEM

The river Punpun, one of the important right bank tributary of the river Ganga, originates from Chottanagpur hills of Palamau district in Bihar at an elevation of 300 m (Fig.1) It joins the river Ganga near Fatwa about 25 Kms downstream of Patna covering a total distance of 232 Kms. The river has a number of tributaries joining it mostly from its right bank. The entire Punpun catchment lies between longitude $84^{\circ}10$ 'E to $85^{\circ}20$ 'E and latitude $24^{\circ}11$ 'N to $25^{\circ}25$ 'N. It is located on the right bank of the Ganga and is bounded by the Sone river system on the west and Kiul-Harohar-Falgu river system on the east. On its northern side is the river Ganga and on its southern side, it is bounded by Chottanagpur hills.

A Project is proposed for the construction of diversion barrage on river Punpun at Hamidnagar at longitude 84° 38° E and latitude 25° 4['] N in the district of Aurangabad near Goh, which is 112 km below its origin (Fig. 2). The barrage will have irrigation systems to irrigate a GCA of 58,870 hectare during kharif season. To estimate the water availability and runoff due to precipitation in the upper catchment, rainfall-runoff simulation techniques need to be utilized and developed.

In the present study, a rainfall-runoff simulation model, HEC-1 has been used with several options in the Punpun catchment upto Hamidnagar. The topographical area upto Hamidnagar(3314 Sq.km.) is having steep slopes with forest at the upper part and

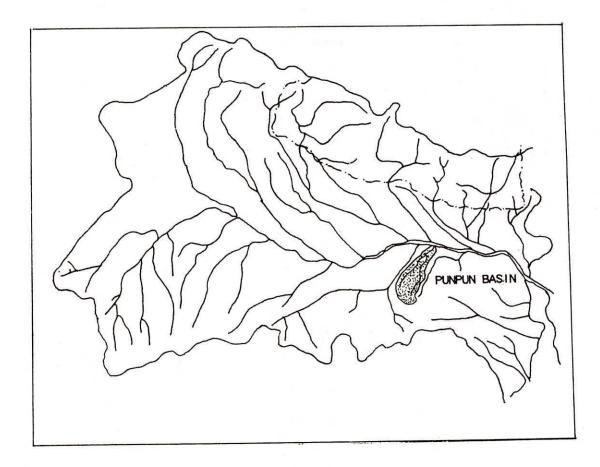
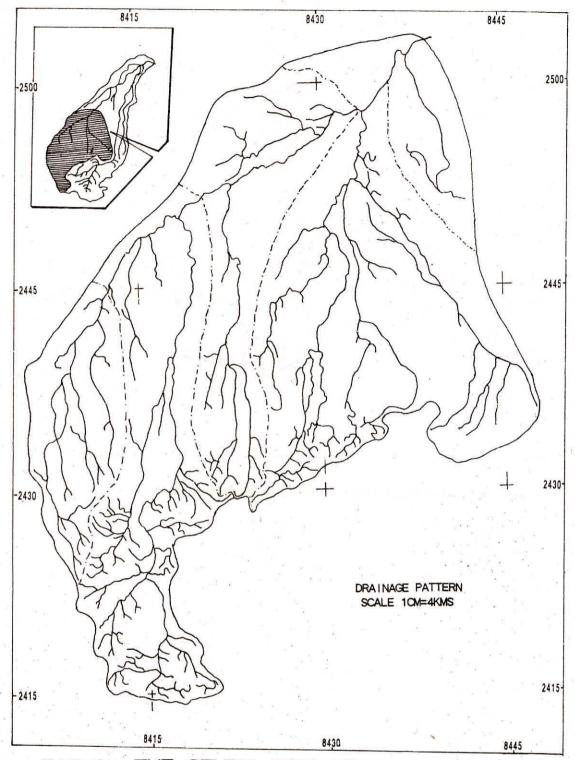
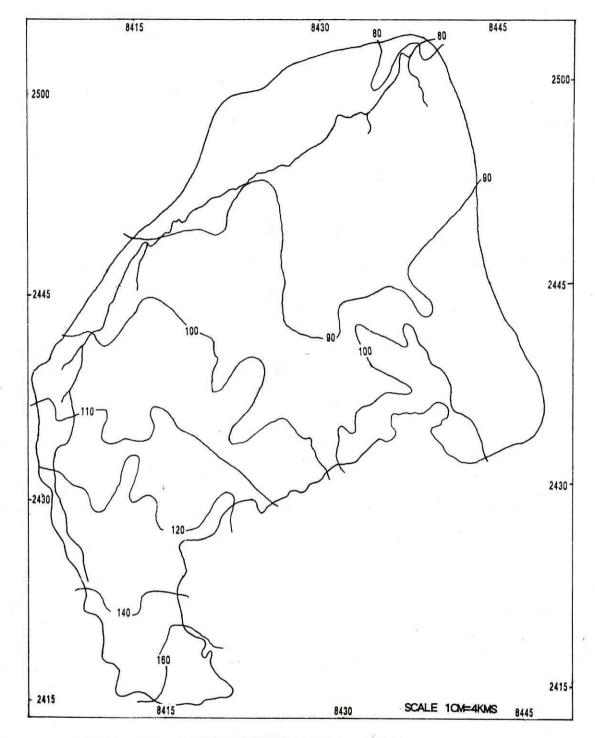
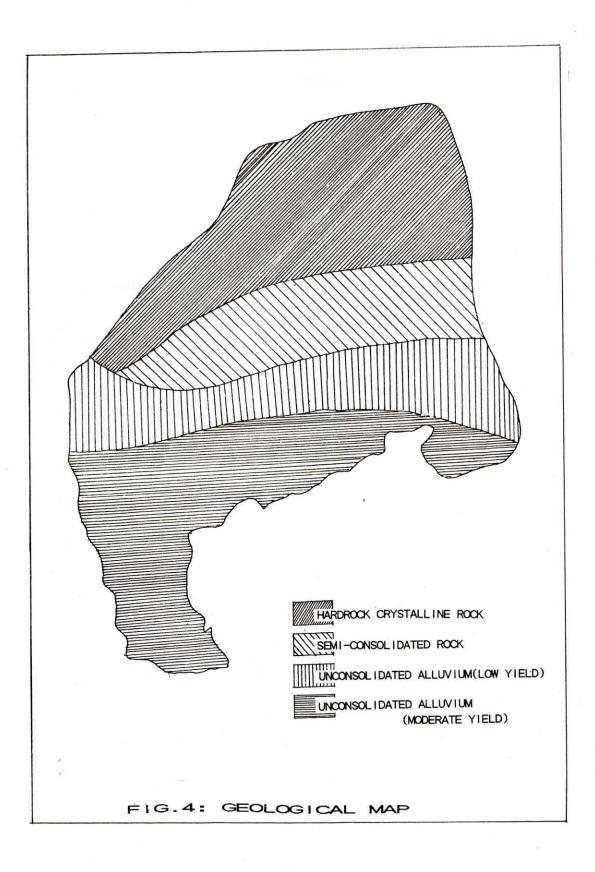



FIG.1: INDEX MAP OF PUNPUN BASIN




7.

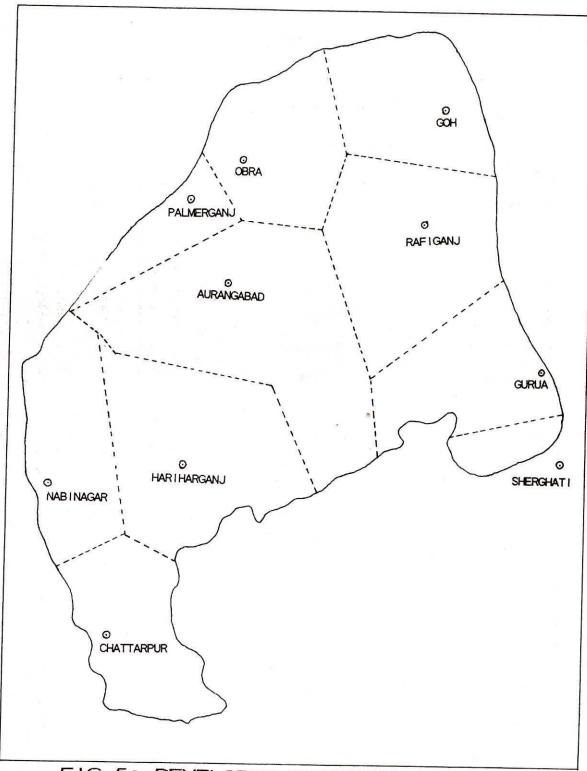
mild slope at the lower part(Fig.3). In the upper part. precipitation occurs more frequently and sometimes with high intensities for longer duration. Interception losses are significant due to forest type of vegetation. Infiltration losses are varying due to change in slope & soil characteristics. In the lower part, precipitation is uniform and not varying frequently. Runoff from the catchment emerges when rainfall undergoes through various component processes such as interception, detention, evapo-transpiration, overland flow, infiltration, inter-flow, percolation, sub-surface flow, base flow, etc.

The geology of the area varies from granite, gneiss, charnokites in the hills to the recent alluvium in the plains(Fig.4). The broad soil groups are calcium and non calcium, recent and old alluvium and brown forest soils, red soil podzowe, lateritic soil with cover being very deep in plains and deep to shallow in hills.

3.0 DATA COLLECTION AND PROCESSING

For the study area, the input data collected & processed for rainfall-runoff simulation using HEC-1 package are as described below:

3.1 Rainfall data


There are ten raingauge stations evenly located in the catchment area of river Punpun up to Hamidnagar. Most of these raingauge station have rainfall data for 12-13 years (Table 1). All these raingauge stations are available in Block head quarters and are maintained by the BDO's.

All the rain gauge stations have ordinary raingauges except Palmerganj raingauge station. In the present study, rainfall records for eight severe storm events, single peaked were collected from all the raingauge stations(recording and nonrecording) as input for HEC-1 program. Daily observed rainfall data were converted into hourly rainfall data using hourly rainfall ratio of the Palmerganj's observed hourly' rainfall data(Appendix I). Five events were used for Calibration and optimization of the model parameters and three events were used for validation.

Theissen polygon technique was applied to compute equivalent mean rainfall of Punpun catchment upto Hamidnagar(Fig.5). Theissen weights for each raingauge stations calculated are given in Table 2.

SNO.	Raingauge Station	Area sq.km.	Period	Years	Type of Station
1.	Goh	3314	1974-8	15 12	ORG
2.	Rafiganj		1974-86	13	ORG
3.	Gurua		1974-86	13	ORG
4.	Sherghati	n	1974-86	13	ORG
5.	Obra		1974-85	12	ORG
6.	Aurangabad	н	1974-86	13	ORG
7.	Palmerganj	μ.	1974-86	13	SRRG
8.	Hariharganj		1974-86	13	ORG
9.	Chatarpur		1974-86	13	ORG
10.	Nabinagar		1974-86	13	ORG

Table 1: Ranfall data availability for raingauge stations

te

Ra	ingauge Station	Area in Sq.km	Thiessen weight
1.	Goh	308	0.093
2.	Rafiganj	464	0.141
3.	Gurua	302	0.091
4.	Sherghati	71	0.022
5.	Obra	259	0.078
6.	Aurangabad	689	0.208
7.	Palmerganj	131	0.039
8.	Hariharganj	485	0.146
9.	Chattarpur	299	0.090
10.	Nabinagar	306	0.092

Table 2: Theissen weights for raingauge stations

.

3.2 Gauge & Discharge data

Gauge and discharge data at Hamidnagar barrage site are available from 1976 to 1986 i.e for 11 years for monsoon season only. The gauge sites are maintained by Water Resources Department, Govt. of Bihar. Velocities of flowing water were measured by float method and the corresponding discharge values were worked out by developing rating curves. However the rating curves were compared with the rating curve of Sripalpur (C.W.C) site and found to be consistent.

In the present study, the discharge data observed at Hamidnagar were examined and eight single peaked observed hydrographs were randomly selected for the analysis(Appendix 1). The observed runoff data are available at 6 hourly interval i.e. four times a day at 0600, 1200, 1800 and 2400 hours. The data for the rest of the curation are not being observed. In the present study these data were interpolated at one hour interval.

3.3 Topographic data and other ancillary data

The topographic data, salient features of the study area, landuse, contours, soil information and other relevant data were obtained from various Central. State and Non-Govt. organ izations/departments. Longitudinal profile of the main channel and its tributaries were developed using topographic maps. The loss rate were estimated by the available relevant information of the study area.

4.0 METHODOLOGY

In the present study, the following techniques/options of HEC-1 model were used for rainfall-runoff transformation /simulation in the study area of the catchment:

4.1 Initial and Constant Loss-rate computation

There is no data available for the loss-rate. Result of study of 134 flood events recorded for 15 big catchments in Sone. Punpun and Falgu basin of area ranging from 27 sq.km. to 1040 sq.km. shows that 80% of loss rate values exceeded 2 mm/hour and 10% of values exceeded 1.5 mm/hour. Mode value of 2.5 mm/hour is recommended for assessment of design flood of 50 years; 100 year return period for design of highway and railway bridges. In these studies, attempts have been made to compare the storm input rainfall over the basin with measured runoff that has come out for the event. Loss-rates are never uniform i.e., there are higher losses in the beginning with tapering to a suitable loss rate. There are limitations in denoting loss rates due to inaccuracies in flood flow measurement and also inaccuracies in assessment of areal distribution of rainfall and base flow separation. Thus. is an approximate stable loss for a severe storm of what 100 years return period of for a standard project storm or probable maximum storm is to be based on proper justification of suitable ioss rates, it may be taken as 2.5 mm/hour. In the present 09 study, initially the value of loss rate is taken to be 2.5. This value was further optimized for different storm events and aver-

aged. The validity of the averaged value of loss rate was then tested.

Rainfall-excess is one of the important component of precipitation and is that portion of precipitation which makes its way towards stream channels, lakes or ocean as surface flow. Rainfall excess is the rate at which water may infiltrate into the soil in addition to other abstraction. The volume of rainfall-excess resulting from a particular storm event was determined using initial and constant loss rate method.

4.2 Time-area curve development

For the development of the Time-area curve, the concentration time, T_c , was calculated for all the streams of the watershed. The concentration time, T_c , of a watershed is the travel time of the waterway in the watershed and was determined by the following Kirpich's(1940) empirical equation in the present study:

$$T_{-} = 0.0195 \ L^{0.77} s_{1}^{-0.385} \tag{1}$$

in which,

L = the main stream length (m), and

S₁= the equivalent mean slope of the main stream. S₁ for the watershed was determined by an empirical equation proposed by Wu (1964):

$$S_1 = v^{*} [N / \{1/vs_1 + 1/vs_2 + \dots + 1/vs_n\}]$$
 (2)
where,

N = Total number of observations, and

s1.s2, s2,= slopes at various distances

Fig.6 illustrates the procedure & calculation for computation of concentration time of the main stream using equations 1 and 2. Based on the computed concentration time, T_c , isochrones (area of equal travel time) of 1/2 hour interval were plotted for the study area(Fig.7) and further a time area curve representing the percent of the travel time and cumulative area contributing to the outlet was developed(Fig.8). The Time area curve developed was used for computation of outflow hydrograph by Clark unit hydrograph method. Table 3 gives the details of Time in percentage of T_c and contributing area.

4.3 Base flow separation

The base flow was separated from the total hydrograph using an empirical method of HEC-1 package(Refer HEC-1 manual).

4.4 Clark method

The Clark method(1945) needs to compute the following three parameters for transformation of rainfall-excess into runoff: T_c , the Concentration time; R, the storage coefficient; and a time-area curve. In the present study, all these parameters were computed, optimized and calibrated using HEC-1 model and its capabilities.

4.5 Calibration and Validation of the Model Parameters

4.5.1 Calibration

Model calibration involves manipulating a specific model to some range of accuracy. The fitting or calibration procedure

Distance upstream	from in meters	Elevation meters	in	Slope
0.00		140.00	I	
17000.00		120.00	}	0.0011765
26000.00		110.00	}	0.0011111
44000.00		100.00	}	0.0005556
61000.00		90.00	}	0.0005882
112000.00		80.00	}	0.0001961

 $\begin{array}{l} T_{\rm C} = 0.0195 \ x \ (L)^{0.77} \ x \ (S)^{-0.385} \\ T_{\rm C} = 0.0195 \ x \ (112)^{0.77} \ x \ (0.0007255)^{-0.385} \\ T_{\rm C} = 13.32 \ hours = Say \ 14.00 \ hrs. \end{array}$

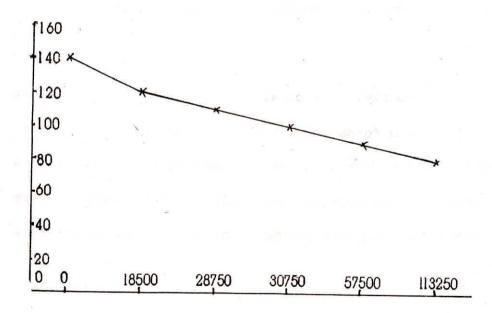
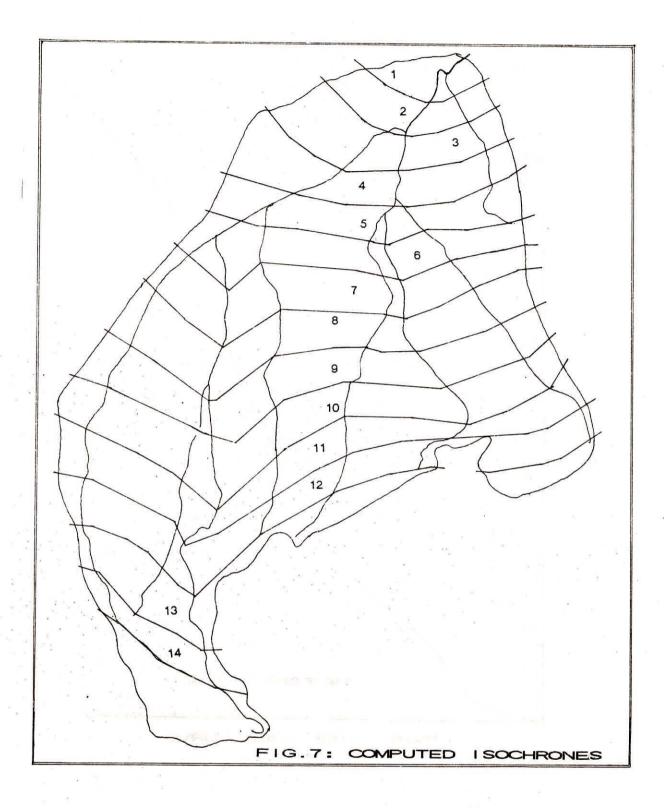
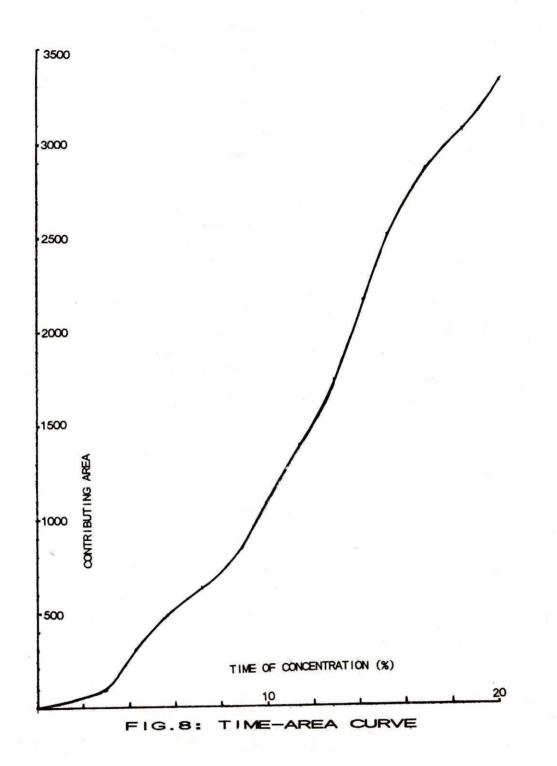




FIG.6: CONCENTRATION TIME ESTIMATION

20.

S.No.	Time in % of T_{C}	Contributing area
1.	0.00	0.00
2.	14.28	147.00
3.	21.42	320.00
4.	28.57	510.00
5.	35.71	684.00
б.	42.85	891.00
7.	50.00	1133.00
8.	57.40	1445.00
9.	62.48	1791.00
10.	71.43	2206.00
11.	78.57	2570.00
12.	85.71	2881.00
13.	92.86	3089.00
14.	100.00	3314.00

Table 3: Data for Time-area diagram

involves adjusting the values of the process parameters such as infiltration and soil moisture capacity which can not readily be assessed by measurements. All empirical models and all lumped, conceptual models contain parameters whose value has to be fixed through calibration. The HEC-1 provides a powerful optimization technique for estimation of some of the parameters when gauged precipitation and discharge data are available. By using this technique and regionalizing the results, rainfall runoff parameters for ungauged catchments can also be estimated (HEC, 1981). Data requirement for the optimization is : basin average precipitation, basin area, starting flow base flow parameters and the outflow hydrograph. Unit hydorgraph, T_c, R and loss rate parameters can be determined individually or in combination.

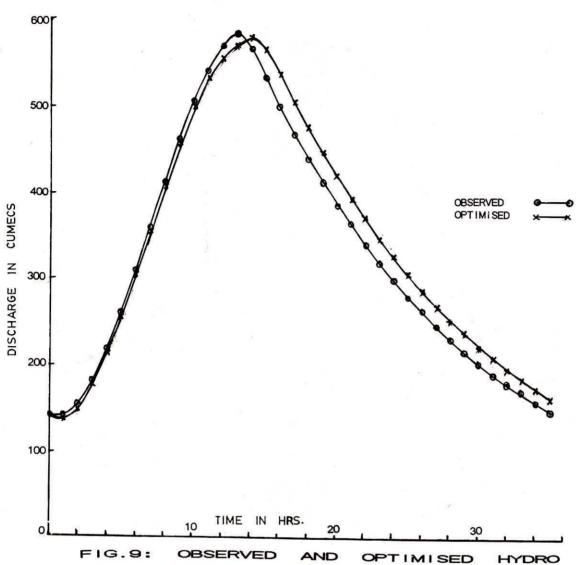
In the present study, five observed storm events were randomly selected from the period 1976 to 1984 and were used for the calibration of model parameters(Table 4). To gain initial estimates of different parameters, for initial runs of the models, the parameters T_c , R and initial and constant loss rates were optimized using automatic parameters optimization capability of the model(Appendix II). The following procedure was adopted for optimization:

1. Initially T_c , R, initial and constant loss rate values were kept to be -15, -15, -2.5, and -2.0 respectively for optimization.

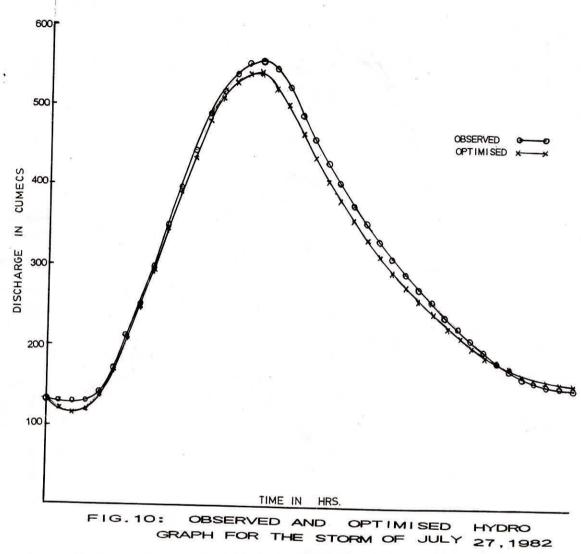
2. After first run, the computed initial and constant loss rates for all the storm events were averaged and then fixed to be 3.12

S1.No.	Storm events used for calibration runs	Storm events used for validation
1.	July 17, 1979	August 7, 1982
2.	July 27, 1982	August 30, 1982
3.	July 28, 1983	July 23, 1984
4.	August 8, 1984	
5.	August 4, 1986	

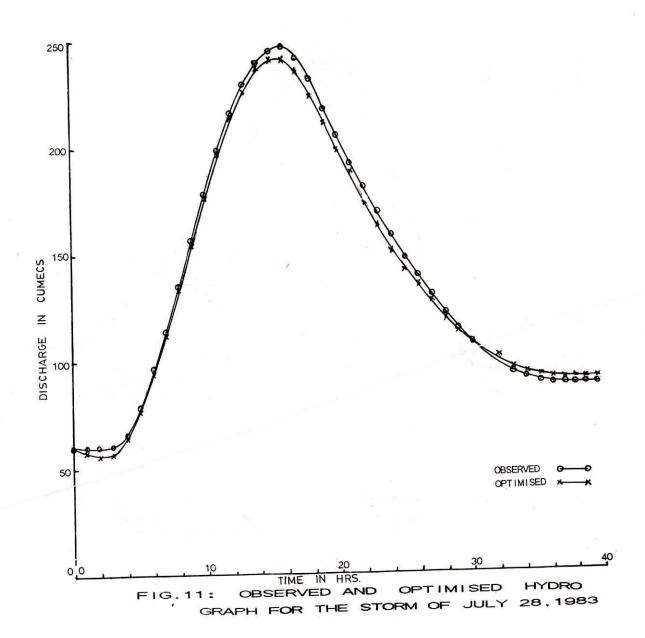
Table 4: Storm events used for calibartion and validation of the model

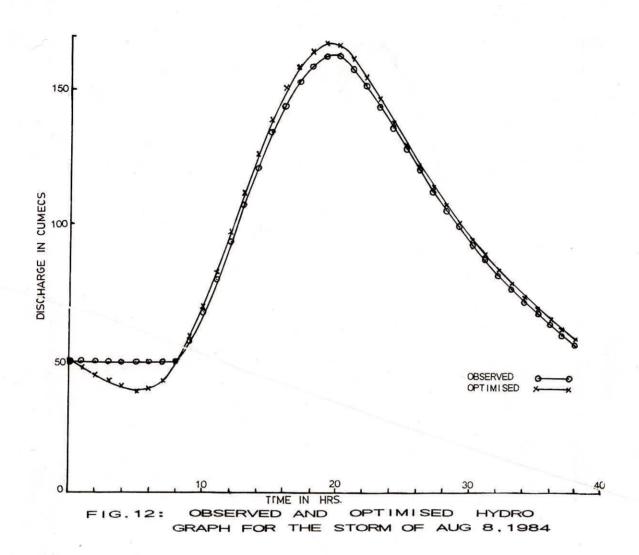

and 2.43 respectively .

3. After second run, the compute values of the ratio $R/(T_c+R)$ for all the storm events were averaged and then fixed to be 0.51 . 4. After third iteration, the computed values of T_c and R for all the storm events were averaged and then fixed to be 14.63 and 15.23 respectively.

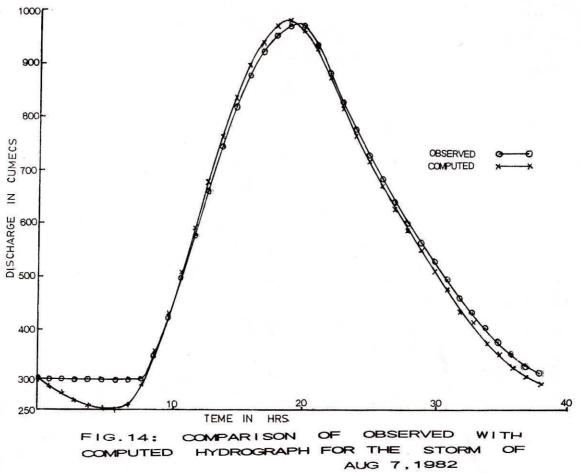

5. After fourth iteration, the computed hydrographs for all hydrographs and the corresponding observed hydrographs were plotted(Figs.9,10,11,12,and 13). Results showing change in volume, depth percentage error for all optimization runs(iterations) are given in Appendix III.

4.5.2 Validation


For validation of different model parameters, three single peaked observed hydrographs were used(Table 4). In the present study, the model parameters, T_c, R, initial loss rate and constant loss rate were optimized and calibrated to be 14.63, 15.23, 3.12 and 2.43 respectively. Using these parameters, the computed hydrographs were developed. The computed hydrographs were then with the corresponding observed hydrographs compared Appendir 1 (Figs.14,15,16). shows the results of optimization run using calibrated values of model parameters. It can be seen that the observed and computed hydrographs are matching and the calibrated model parameters may be used for rainfall-runoff simulation.



GRAPH FOR THE STORM OF JULY 17, 1979



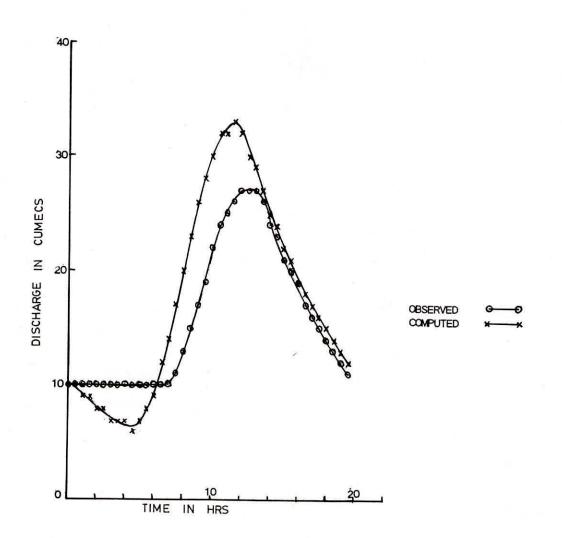


FIG.15: COMPARISON OF OBSERVED WITH COMPUTED HYDROGRAPH FOR THE STORM OF AUG 30,1982

5.0 CONCLUSIONS

Based on this study, the following conclusions have been drawn:

1. HEC-1 package has been successfully used for modelling rainfall-runoff simulation of Punpun basin upto Hamidnagar within the constraints of data availability. The simulation results shows good reproduction of stream flow volumes, peaks and hydrographs.

2. The model parameters calibrated and then validated may be used for simulation of rainfall-runoff simulation and flood estimation in the Punpun basin upto Hamidnagar.

3. HEC-1 needs extensive input data base which may not be available for all the basins. In the present study, due to non-availability of sufficient data, some of the input data were assumed based of the available information. The results obtained gives an good approximate results.

4. In the present study only one recording raingauge station is available which is not adequate for good results. Also, the recording and non-recording raingauge network, though adequate, are not well distributed within the basin.

5. At present, there is only on gauge-discharge site in the study area of 3314 sq.km.. This may not give very accurate results.

34

6.0 RECOMMENDATIONS

1. There should be 2 to 3 recording raingauge stations as well as gauge-discharge sites each covering an area of 1000 sq.km. in the basin.

2. The calibrated and validated model parameters should be verified with other methods(options) available in the HEC-1 model.

3. The existing precipitation gauge network should be checked with available methods(Kagan, Halls, WMO guidelines or Optimum technique) and then appropriate modifications should be made.

REFERENCES

- 1. Feldman, A.D. .1981. "HEC models for Water Resources System Simulations : heory and Experience". In advances inydrosciences ed. Ven Te Chow, vol. 12, Academic Press. pp. 297-423.
- Hydrologic Engineering Center. 1981. "HEC-1 Flood Hydrograph Package" Generalized computer programme. User's Manual U.S. Army crops of Engineers, California.
- Hydrological Engineering Centre. 1982." Hydrologic Analysis of Ungauged watersheds using HEC-1". Training Document No. 12, U.S Army crops of Engineering, California.
- NIH. 1991. "Application of SHE model to Hemavati (upto Sakleshpur) basin". National Institute of Hydrology, Roorkee.
- 5. Singh, R.D.; S.M.Seth, 'Comparison of Unit Hydrographs", CS 7, Technical Report, National Institute of Hydrology, Roorkee.
- Ramasastri, K.S.; S.M.Seth(1984), "Application of HEC-1 for flood forecasting" Proceedings of National Seminar on Real-time Hydrological Forecasting. 31 Oct. - 1 Nov.1984, New Delhi. pp. 217-226.
- Jain, M.K. and Ramasastri, K.S. . 1990. "Application of HEC-1 to Hemavati(upto Sakleshpur) basin. NIH report No. CS-55

TD	RAINFA	LL-RUNOF	F SIMULAT	ION		,					
ID	PUNPUN	SUB-BAS	IN UPTO H	AMIDNAGAP	2						
	BIHAR										
IT		17JUL79	0900	36							
IO	00	2	0,000	00							
OU		2									
IM											
	CO	17JUL79	0900	4						6	
IN		1/JUL/9	0900	4							
PG	1			1/ 0							
PC	0	9.1	13.7	14.8							
PG	2	12									
PC	0	0	0	0							
PG	3										
PC	0	0	0	0							
PG	4.										
PC	0	101.7	152.75	165.5							
PG	5										
PC	0	34.4	51.7	56							
PG	6										
PC	Ō	25.8	38.8	42							
PG	7										
PC	Ó	40	60	65							
PG	8	40	00	05							
PC	0	89.4	134.2	145.4							
		09.4	134.2	143.4							
PG	9	F 9 1	70 7	86.4							
PC	0	53.1	79.7	00.4							
PG	10		60 O	76							
PC	0	46.1	69.2	75							
	******	***									
KK	A	0.200.20	al as a c	20							
KM			calculati		A						
IN	60	17JUL79	0900	36			0000000		0.002	· · · · ·	
00	139	139	154	182	219	262	310	360	413	464	
90	508	543	570	587	567	534	501	469	440	413	
00	387	363	340	319	299	280	263	246	231	217	
00	203	191	179	168	157	148					
BA	3314										
BF	139	25	1.05								
PR	1 1	2	3	4	5	6	7	8	9	10	
PW	.093	.141	.091	.022	078	.208	.039	.146	.095	.092	
LU	-2.5	-2	.021		0,0						
UC	-2.5	-15									
	-15 ******										
second in											

		ALL-RUNOFF N SUB-BASIN									
	BIHAR	1 JOD DAJIN	OFIC	HAMI DINAGAK							
IT		27JUL82	1900	40	8						
IO		2	0.0400.40040								
OU											
IM											
IN	60	27JUL82	1900	7							
PG	1										
PC	0	1	7.2	54.9	62.2	63.6	65.8				
PG PC	2	0	0		-						
PG	3	U	0	, 0	0	0	0				
PC	0	.11	.86	7.19	7 1.0	7 69					
PG	4		. 00	1.19	7.46	7.63	7.9				
PC	Ó	.13	1	8.55	8.88	9.08	9.4				
PG	5			0.00	0.00	5.00	2.4				
PC	0	.3	2.4	20	20.8	21.2	22				
PG	6					max and m					
PC	0	0	0	0	0	0	0				
PG	7										
PC	0	.5	4	33.25	34.5	35.25	36.5				
PG	8		17								
PC	0	.55	4.2	35.5	36.8	37.7	39				
PG PC	. 9 0	0	0	0	•	-					
PG	10	U	0	0	0	0	0				
PC	0	. 2	1.4	11.8	12.3	12.5	13				
	*****	• 2	1.4	11.0	12.3	12.0	15				
KK	A				4						
KM	Basin	runoff cal	culati	on for	A						
IN		27JUL82	1900	40							
80	125	125	125	125	137	169	207	250	297	347	
80	398	446	486	517	540	554	557	548	523	490	
QO	459	431	404	378	355	332	312	292	274	257	
QO	241	226	211	198	186	174	163	153	144	136	
BA	3314										
BF	125	25	1.05								
PR PW	1 :093	2	3	4	5	6	7	8	9	10	
LU	-2.5	.141	.091	.022	.078	.208	.039	.146	.095	.092	
UC	-15	-15									

ZZ

.

38

APPENDIX I(C)

ID	RAINFA	LL-RUNOF	F SIMULA	TION	_					
		I SUB-BAS	IN UPTO	HAMIDNAGA	R		1			
ID IT	BIHAR	28JUL83	0400	38						
IO	00	2000205	0400	0.0						
ÕŬ		_								
IM										
IN	60	28JUL83	0400	9						
PG	1									
PC	0	0	0	0	0	0	0	0	0	
PG	2								-	
PC	0	0	0	0	0	0	0	0	0	
PG	3							-		
PC	0	0	0	0	0	0	0	0	0	
PG	4			2.4					1221	
PC	0	.04	1.5	3.4	4.51	4.66	4.83	4.9	5	
PG	5								05	
PC	0	.64	25.5	57.46	76.67	79.22	82.11	83.38	85	
PG	6							26.00	27 6	
PC	0	.28	11.28	25.42	33.91	35.04	36.32	36.88	37.6	
PG	7		-		1.00	101	120 5	120 E	133	
PC	0	1	40	90	120	124	128.5	130.5	155	
PG	8		10.0	20 62	40.00	1.2 22	43.76	44.44	45.3	
PC	0	.34	13.6	30.62	40.86	42.22	43.70	44.44	43.3	
PG	9	10	10 5	42 04	58.63	60.58	62.79	63.76	65	
PC	0	.49	19.5	43.94	50.05	00.50	02.15	03.70	00	
PG	1.0	.15	6	13.4	18.04	18.64	19.32	19.62	20	
PC *		•13 кжжж	0	13.4	10.04	10.04	19102			
кк	А									
KM		rupoff (calculati	on for	А					
IN	60	28JUL83	0400	38						
00	61	61	61	61	66	79	96	114	135	156
QO	178	199	216	230	240	245	247	242	232	218
QO	205	192	180	169	158	148	139	130	122	114
QO	107	101	94	88	83	78	73	68		
BA	3314	1.0000								
BF	61	25	1.05						2011	
PR	1	2	3	4	5	6	7	8	9	10
PW	.093	.141	.091	.022	.078	.208	.039	.146	.095	.092
LU	-2.5	-2.0								
UC	-15	-15								
*	*****	****								

APPENDIX I(D)

ID IT IO OU IM		ALL-RUNOFF 08AUG84 2	SIMULATI 1300	ION 39						
IN		08AUG84	1300	11						
PG PC PC	1 0 3	.12	.12	.13	.52	.98	2.04	2.12	2.17	2.9
PG PC PC	2 0 21	.84	.84	.94	3.63	6.87	14.28	14.87	15.2	20.33
PG PC PC	3 0 0	0	0	0	0	0	0	0	0	0
PG PC PC	4 0 40	1.6	1.6	1.8	6.92	13.08	27.2	28.32	28.96	38.72
PG PC	5 0	1.08	1.08	1.21	4.67	8.83	18.36	19.12	19.55	26.14
PC PG PC	27 6 0	. 27	.27	31	1.18	2.72	4.62	4.81	4.92	6.58
PC PG PC	6.8 7 0	3	3	3.5	13.5	25.5	53	55.25	56.5	75.5
PC PG PC PC	78 8 0 33.5	1.34	1.34	1.51	5.79	10.95	22.78	23.72	24.25	32.43
PG PC PC	9 9 15	.6	.6	.67	2.59	4.9	10.2	10.62	10.86	14.52
PG PC PC	10 0 2.5	. 1	.1	.11	.43	.82	1.7	1.77	1.81	2.42
KK	A	runoff ca	loulatio	n for	А					
KM	60 Basin	08AUG84	1300	39						
IN QO	49	49	49	49	49	49	49	49	49	56
Q0	67	79	93	107	121	134	144	153	159	163
		158	152	144	136	128	120	112	105	99
Q0	163	87	81	76	71	67	63	59	55	
00	92	87	01	70	<i>(</i>)	U I				
BA		05	1 05							
BF	49	25	1.05	4	5	6	7	8	9	10
PR	1	2	3		.078	.208	.039	.146	.095	.092
PW	.093	.141	.091	.022	. 070	.200	.059			
LU	-2.5	-2.0								
UC	-15	-15								
ZZ										

40

TD	DATNE	ALL-RUNOF	C CTMULA	TTON							
TD	PLINPLI	N SUB-BAS	TN UPTO	HAMIDNAGA	D						
ID	BIHAR	N OUD-DAG	SIN OFIC	NAMI DINAGA	, rt						
ÎT		04AUG86	1500	43							
IO		2	1500	40							
IM											
OU											
IN	60	04AUG86	1500	5							
PG	1			5							
PC	0	7.92	19.8	27.39	33						
PG	2	2.5.5 = 0		27.05	55						
PC	0	0	0	0	0						
PG	3				0						
PC	0	16.32	40.8	56.44	68			2			
PG	4			1970-1970-1970 (M. 1970-1970-1970-1970-1970-1970-1970-1970-							
PC	0	9.84	24.6	34.03	41						
PG	5										
PC	0	0	0	0	0						
PG	6										
PC	0	8.26	20.64	28.55	34.4						
PG	7										
PC	0	2.02	5.04	6.97	8.4						
PG	8										
PC	0	12	30	41.5	50						
PG	9										
PC	0	. 0	0	0	0						
PG	10										
PC	0	10.61	26.52	36.68	44.2						
	*****	***									
KK	A	3.3									
KM	Basin	runoff c			A						
IN		04AUG86	1500	43							
90	105	105	105	120	146	181	222	267	315	365	
90	412	454	488	513	530	537	532	514	484	457	
00	428	401	376	352	330	310	290	272	255	239	
80	224	210	197	184	173	162	152	142	134	127	
90	121	115	110							1 6 1	
BA	3314										
BF	105	25	1.05								
PR	1	2	3	4	5	6	7	8	9	1.0	
PW	.093	.141	.091	.022	.078	.203	.039	.146	.095	.092	
LU	-2.5	-2.0							100000000000000000000000000000000000000		
UC * *	-15 *****	-15									
		The second se									

APPENDIX II(A)

RESULT OF CALIBRATION RUNS

1. Summary

Date	P	Percent error				Optimization Results							
	Avg.	Vol.	Lag	Peak	Tc	R	$R/(T_{c}+R)$	Ţρ	Ср	Qp	Strtl	Cnstl	
17JUL 79	1.2	0.5	0.0	-3.5	13.72	14.99	0.52	12.73	0.55	28.0	3.50	2.70	
	4.2	2.6	1.4	-3.4	13,28	16.74	0.56	12.50	0.50	26.0	3.12	2.43	
	5.6	5.3	1.7	1	14.43	15.02	0.51	13.41	0.56	27.0	3.12	2.43	
	6.0	4.7	2.3	-1.4	14.63	15.23	0.51	13.53	0.56	27.0	3.12	2.43	
5													

S.No.	Details of Hydrograph	Sum of Flows	Equiv. Flow	Mean Flow	Time to center of mass	Lag C.M. to C.M.	Peak Flow	Time of Peak
1.	Observed	11765	12.78	327	17.38	15.04	587	13.0
2.	Computed (Ist Run)	11829	12.85	329	17.38	15.04	566	13.0
3.	Computed (IInd Run)	12075	13.117	335	17.54	15.24	567	13.0
4.	Computed (IIIrd Run)	12385	13.453	344	17.64	15.30	586	14.0
5.	Computed (IVth Run)	12320	13.383	342	17.33	15.39	579	14.0

APPENDIX II(B)

RESULT OF CALIBRATION RUNS

1	÷	Summary

Date	8	Percen	t erro	r	Optimization Results								
	Avg.	Vol.	Lag	Peak	Tc	R	$R/(T_{c}+R)$	Тр	qC	Qp	Strtl	Cnstl	
27JUL - 82	0.7	1	0.3	0.0	14.94	15.11	0.50	13.83	0.57	27.0	2.78	2.22	
	2.5	-1.6	-0.6	-0.4	15.32	14.03	0.48	14.17	0.61	27.0	3.12	2.43	
	3.4	-3.1	-0.8	-2.5	14.52	15.11	0.51	13.46	0.56	27.0	3.12	2.43	
	3.3	-3.3	-0.4	-3.2	14.63	15.23	0.51	13.53	0.56	27.0	3.12	2.43	

S.No.	Details of Hydrograph	Sum of Flows	Equiv. Flow	Mean Flow	Time to center of mass	Lag C.M. to C.M.	Peak Flow	Time of Peak
1.	Observed	12292	13.334	307	19.78	15.78	557	16.0
2.	Computed (Ist Run)	12274	13.334	307	19.82	15.82	557	16.0
з.	Computed (IInd Run	12095	13.138	302	19.69	15.69	555	16.0
4.	Computed (IIIrd Run)	11916	12.944	298	19.66	15.66	543	15.0
5.	Computed (IVth Run)	11883	12.909	297	19.72	15.72	539	14.0

APPENDIX II(C)

RESULT OF CALIBRATION RUNS

1. Summar	Y
-----------	---

	Percen	t erro	r	Optimization Results								
Avg.	Vol.	Lag	Peak	Tc	R	$R/(T_{c}+R)$	Tp	Ср	Qp	Strtl	Cnstl	
0.9	-0.1	0.4	-0.1	14.88	15.17	0.50	13.75	0.55	27.0	3.01	2.39	
1.6	-1.0	-0.1	-0.1	15.09	14.44	0.49	13.96	0.59	27.0	3.12	2.43	
2.2	-2.0	-0.3	-1.7	14.56	15.15	0.51	13.48	0.56	27.0	3.12	2.43	
2.3	-2.2	-0.1	-2.1	14.63	15.23	0.51	13.53	0.56	27.0	3.12	2.43	
	Avg. 0.9 1.6 2.2	Avg. Vol. 0.9 -0.1 1.6 -1.0 2.2 -2.0	Avg. Vol. Lag 0.9 -0.1 0.4 1.6 -1.0 -0.1 2.2 -2.0 -0.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Avg. Vol. Lag Peak T _c 0.9 -0.1 0.4 -0.1 14.88 1.6 -1.0 -0.1 -0.1 15.09 2.2 -2.0 -0.3 -1.7 14.56	Avg. Vol. Lag Peak T _c R 0.9 -0.1 0.4 -0.1 14.88 15.17 1.6 -1.0 -0.1 -0.1 15.09 14.44 2.2 -2.0 -0.3 -1.7 14.56 15.15	Avg. Vol. Lag Peak T_c R R/(T_c +R)	Avg.Vol.LagPeak T_c R $R/(T_c+R)$ Tp0.9-0.10.4-0.114.8815.170.5013.751.6-1.0-0.1-0.115.0914.440.4913.962.2-2.0-0.3-1.714.5615.15 0.51 13.48	Avg.Vol.LagPeak T_c R $R/(T_c+R)$ TpCp0.9-0.10.4-0.114.8815.170.5013.750.551.6-1.0-0.1-0.115.0914.440.4913.960.592.2-2.0-0.3-1.714.5615.15 0.51 13.480.56	Avg.Vol.LagPeak T_c R $R/(T_c+R)$ TpCpQp0.9-0.10.4-0.114.8815.170.5013.750.5527.01.6-1.0-0.1-0.115.0914.440.4913.960.5927.02.2-2.0-0.3-1.714.5615.15 0.51 13.480.5627.0	Avg.Vol.LagPeak T_c R $R/(T_c+R)$ TpCpQpStrtl0.9-0.10.4-0.114.8815.170.5013.750.5527.03.011.6-1.0-0.1-0.115.0914.440.4913.960.5927.0 3.12 2.2-2.0-0.3-1.714.5615.15 0.51 13.480.5627.03.12	

S.No.	Details of Hydrograph	Sum of Flows	Equiv. Flow	Mean Flow	Time to center of mass	Lag C.M. to C.M.	Peak Flow	Time of Peak
1.	Observed	5386	5.851	142	19.22	15.16	247	16.00
2.	Computed (Ist Run)	5379	5.843	142	19.28	15.22	247	16.00
3.	Computed (IInd Run)	5333	5.793	140	19.20	15.13	247	16.00
4.	(IIIId Run) (IIIrd Run)	5279	5.735	139	19.17	15.10	243	15.00
5.	Computed (IVth Run)	5269	5.724	139	19.20	15.13	242	16.00

APPENDIX II(D)

RESULT OF CALIBRATION RUNS

 Summary 	
-----------------------------	--

Percent error				Optimization Results								
A∨g.	Vol.	Lag	Peak	Tc	R	$R/(T_{c}+R)$	Тр	Ср	Qp	Strtl	Cnstl	
4.0	-0.1	2.1	0.9	14.79	15.58	0.51 •	13.69	0.56	26.0	3.05	2.44	
3.9	-0.6	2.3	-0.1	14.62	16.13	0.52	13.59	0.54	26.0	3.12	2.43	
4.3	0.2	2.6	0.8	15.00	15.61	0.51	14.02	0.57	26.0	3.12	2.43	
4.8	1.2	1.7	3.3	14.63	15.23	0.51	13.53	0.56	27.0	3.12	2.43	
	Avg. 4.0 3.9 4.3	Avg. Vol. 4.0 -0.1 3.9 -0.6 4.3 0.2	Avg. Vol. Lag 4.0 -0.1 2.1 3.9 -0.6 2.3 4.3 0.2 2.6	Avg. Vol. Lag Peak 4.0 -0.1 2.1 0.9 3.9 -0.6 2.3 -0.1 4.3 0.2 2.6 0.8	Avg. Vol. Lag Peak T _c 4.0 -0.1 2.1 0.9 14.79 3.9 -0.6 2.3 -0.1 14.62 4.3 0.2 2.6 0.8 15.00	Avg. Vol. Lag Peak T _C R 4.0 -0.1 2.1 0.9 14.79 15.58 3.9 -0.6 2.3 -0.1 14.62 16.13 4.3 0.2 2.6 0.8 15.00 15.61	Avg. Vol. Lag Peak T _c R R/(T _c +R) 4.0 -0.1 2.1 0.9 14.79 15.58 0.51 • 3.9 -0.6 2.3 -0.1 14.62 16.13 0.52 4.3 0.2 2.6 0.8 15.00 15.61 0.51	Avg. Vol. Lag Peak T_c R $R/(T_c+R)$ Tp 4.0 -0.1 2.1 0.9 14.79 15.58 0.51 • 13.69 3.9 -0.6 2.3 -0.1 14.62 16.13 0.52 13.59 4.3 0.2 2.6 0.8 15.00 15.61 0.51 14.02	Avg.Vol.LagPeak T_c R $R/(T_c+R)$ TpCp4.0-0.12.10.914.7915.580.51•13.690.563.9-0.62.3-0.114.6216.130.5213.590.544.30.22.60.815.0015.61 0.51 14.020.57	Avg. Vol. Lag Peak T_c R $R/(T_c+R)$ Tp Cp Qp 4.0 -0.1 2.1 0.9 14.79 15.58 0.51 13.69 0.56 26.0 3.9 -0.6 2.3 -0.1 14.62 16.13 0.52 13.59 0.54 26.0 4.3 0.2 2.6 0.8 15.00 15.61 0.51 14.02 0.57 26.0	Avg. Vol. Lag Peak T_c R $R/(T_c+R)$ TpCpQpStrtl4.0-0.12.10.914.7915.580.51•13.690.5626.03.053.9-0.62.3-0.114.6216.130.5213.590.5426.0 3.12 4.30.22.60.815.0015.61 0.51 14.020.5726.03.12	

S.No.	Details of Hydrograph	Sum of Flows	Equiv. Flow	Mean Flow	Time to center of mass	Lag C.M. to C.M.	Peak Flow	Time of Peak
1.	Observed	3685	04.003	94	21.19	13.31	163	19.00
2.	Computed (Ist Run)	3682	04.000	94	21.47	13.59	164	19.00
3.	Computed (IInd Run)	3663	03.980	94	21.54	13.65	164	20.00
4.	Computed (IIIrd Run)	3692	04.010	95	21.54	13.65	164	20.00
5.	Computed (IVth Run)	3729	04.051	96	21.42	13.53	168	19.00

APPENDIX II(E)

RESULT OF CALIBRATION RUNS

1. Summary

Date	F	Percent	t erro	r	Optimization Results								
	Avg.	Vol.	Lag	Peak	Tc	R	$R/(T_{c}+R)$	Tp	Ср	Qp	Strtl C	Cnstl	
04AUG [*] 86		0.1	0.2	0.2	15.00	15.00	0.50	13.92	0.58	27.3	3.01	2.41	
		-0.5	-0.1	0.0	14.98	14.81	0.50	13.84	0.58	26.0	3.12 2.	43	
	1.0	-1.0	-0.i	-0.1	14.65	15.25	0.51	13.54	0.56	27.0	3.12 2.	. 43	
	1.1	-1.0	-0.2	-0.84	14.63	15.23	0.51	13.53	0.56	27.0	3.12 2	. 43	

s.No.	Details of Hydrograph	Sum of Flows	Equiv. Flow	Mean Flow	Time to center of mass	Lag C.M. to C.M.	Peak Flow	Time of Peak
1.	Observed	12156	13.205	283	20.17	16.78	537	15.00
2.	Computed (Ist Run)	12171	13.222	283	20.20	16.82	538	15.00
3.	Computed	12101	13.145	281	20.15	16.76	537	15.00
4.	(IInd Run) Computed (IIIrd Run)	12030	13.068	280	20.15	16.76	532	15.00
5.	Computed (IVth Run)	12036	13.074	280	20.14	16.75	533	15.00

APPENDIX III(A)

IC	RAINF	ALL-RUNOF	FF SIMULAT		в					
ID	BIHAR		JIN OFIC H	INPLUNAGA	r					
IT	60	07AUG82	0800	39						
IO IM		2								
OU										
I N PG	60		0800	10						
PC PG	2		3.1	5.1	8.2	12.6	28.3	47.1	50.2	54.2
PC PG	3		3.2	5.3	8.5	13	29.2	48.7	51.9	56
PC PG	4		0	0	0	0	0	0	0	0
PC PG	05		.07	.11	.18	.28	.62	1.04	1.11	1.2
PC PG	0		3.1	5	8.1	12.3	27.7	46.1	49.1	53
PC PG PC	07		2.92	4.73	7.7	11.7	26.3	43.8	46.7	50.4
PG PC	0 8 0	.75	2	3.25	5.25	8	18	30	32	34.5
PG	9	.097	. 26	• 41	.67	1.02	2.3	3.82	4.08	4.4
PG	10	0	0	0	0	0	0	0	0	0
	•****** A	•2	.6	1	1.5	2.4	5.3	8.9	9.5	10.2
KM		runoff of	alculation		a.					
IN	60	07AUG82	0800	39	Α					
80	309	309	309	309	309	309	200			
80	422	498	579	663	747 •	821	309 881	309	309	355
00	968	940	891	836	784	735	689	927	958	973
00	533	500	468	439	412	386	362	646	606	568
BA	3314			10. T. 17.	112	500	302	340	319	
BF	309	25	1.05							
PR	1	2	3	4	5	6	7	8	9	10
₽₩ LU	.093	.141	.091	.022	.078	.208	.039	.146	.095	.092
	3.12	2.43								.032
* *	14.03 *****	15.23								

APPENDIX III(B)

ID IT		LL-RUNOFF	SIMULAT 1300	ION 41						
IO	60	30AUG82 2	1500	41						
IM		2								
OU										
IN	60	30AUG82	1300	13						
PG	1	3000002	1500	10						
PC	, o	.65	2.6	3.25	5.21	6.51	9.14	11.1	12.71	15.34
	21.54		28.4	31	0.2.	0.01				
PG	2	20110	2011	01						
PC	22	.53	2.14	2.68	4.28	5.35	7.52	9.13	10.45	12.62
	17.72	22	23.36	25.5						
PG	3		(T) T (T) (T) (T) (T)							
PC	0	. 441	1.76	2.22	3.53	4.41	6.19	7.52	8.61	10.39
	14.59	18.12	19.24	21						
PG	4									
PC	0	.38	1.53	1.91	3.06	3.82	5.37	6.51	7.46	9
	12.65	15.7	16.67	18.2						
PG	5									
PC	0	.21	.84	1.05	1.68	2.1	2.95	3.58	4.1	4.95
PC	6.95	8.63	9.16	10						
PG	6									
PC	0	. 9	3.6	4.5	7.2	9	12.65	15.36	17.59	26.23
PC	29.81	37.02	39.3	42.9						
PG	7									
PC	0	.5	2	2.5	4	5	7	8.5	9.75	11.75
PC	16.5	20.5	22.75	23.75						
PG	8									
PC	0	2	7.9	9.9	15.8	19.7	27.7	33.65	38.54	46.53
	65.33	81.1	86.1	94						
PG	9									1000
PC	0	107	4.28	5.35	8.57	10.71	15.04	18.26	20.91	25.24
	35.44	44.01	46.72	51						
PG										
PC	0		1.76	2.2	3.53	4.41	6.2	7.52	8.61	10.39
PC	14.6	18.12	19.24	21						
KK	A	Manufaction of the		1						
KM		runoff ca			A					
IN		30AUG82	1300	41				10		
00	10	10	10	10	10	10	10	10	10	10
QO	10	10	1-0	10	10	11	13	15	17	19
90		24	25	26	27	27	27	26	24	23
00	21	20	19	. 17	16	15	14	13	13	12
00										
BA	3314									
BF	10	25	1.05		-	~	-			10
PR	1	2	3	4	5	6	7	146	9	.092
PW	.093	.141	.091	.022	.078	.208	.039	.146	.095	.092
LU	3.12	2.43								
UC	14.63	15.23								

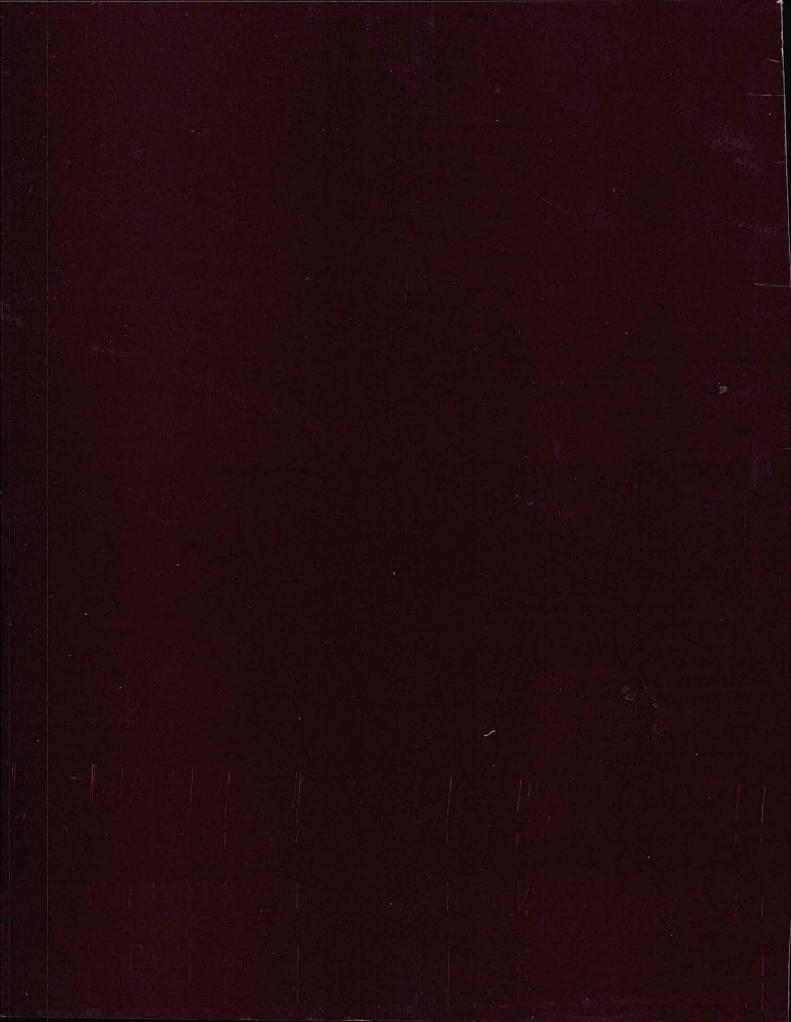
APPENDIX III(C)

	RAINFA	LL-RUNOF	F SIMULA	TION HAMIDNAGAR		a				
ID		SUB-BAS	IN OFICI	MILDIAGAN						
ID	BIHAR		0000	20						
IT	60	23JUL84	2000	30						
10		2								
IM										
OU				1207						
IN	60	23JUL84	2000	5						
PG	1				10020					
PC	0	3.27	14.06	16.34	19					
PG	2									
PC	D	2.74	8.85	13.8	16					
PG	3									
PC	0	0	0	0	0					
PG	4									
PC	Ó	4.99	21.46	24.94	29					
PG	5	1.55								
PC	5 0	1.55	4.66	7.74	9					
PG	6	1.55	4.00	80.20 AC 20						
	0	8.12	34.93	40.59	47.2					
PC		0.12	34.93	40.35	47.2					
PG	7	10	43	50	58					
PC	0	10	45	50	50					
PG	8		07.0	22 00	37.3					
PC	0	6.41	27.6	32.08	57.5					
PG		7. (11)(12)		0.5	10					
PC		1.72	7.4	8.6	10					
PG										
PC		8.94	38.48	44.72	52					
*	*****	****								
KK	A									
KM		runoff c	calculati	on for	A					
IN		23JUL84	2000	30				2271	272 X	
00		73	73	73	79	87	98	109	121	134
QO		156	164	170	173	173	170	163	153	144
QO		127	119	112	105	98	92	87	82	77
BA		1. 1 .								
BF		25	1.05							
		25	1.05	4	5	6	7	8	9	10
PR		. 141	.091	.022	.078	.208	.039	.146	.095	.092
PW			.031				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	100		
LU		2.43								
ŰC	14.63	15.23								
*	*****	T. T. T. T.								

DIRECTOR

DR. S.M. SETH

HEAD & COORDINATOR


DR. K.K.S. BHATIA

STUDY GROUP

RAMAKAR JHA MANOHAR ARORA

ASSISTANCE

A.K. SIVADAS M.B. SANTOSH

