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PREFACE 

Water is one of the most essential constituents of the human 

environment. As a part of the general concern for environment, 

water quality has become an important water resources issue due to 

the increasing trend of pollution sources e.g. rapid population 

growth, rapid industrial development., increasing mining and 

petroleum operations, and too much use of fertilisers and 

pesticides in agriculture 

Water quality is usually described by set of physical, 

chemical, and biological parameters which are mutually 

inter-related and vary according to a complex function of natural 

and man made interactions in both time and space. Both of these 

interacting mechanisms affecting water qualty are to a certain 

extent affected by the laws of chance. This is particularly true 

for the effects introduced through variation in the natural 

hydrologic cycle. To properly interpret water quality data, it is 

critical that the random nature of water quality variables be 

appreciately understood. Emphasis should be given on 

understanding how water quality parameters evolve under natural 

and society affected conditions in various bodies of water. 

Furthermore, the deterministic water quality analysis is 

complicated by the fact that many of the factors which influence 

variations in water quality are still not well defined. These 

factors may be further obscured by the occurrence of random 

events. Consequently, the application of stochastic techniques to 

water quality data has become necessary in order to generate the 

data for various water quality parameters which can be used for 

water quality modelling studies. 

In the present study, stochastic modelling technique with 

particular emphasis on river water quality, is described and 

applied, to model the mean monthly dissolved oxygen data observed 

at U/S and D/S sections of Yamuna river at Delhi. Data published 

by CWC, New Delhi in "Water Quality Studiess- Yamuna System 

(1978-90)" for river Yamuna were used for the study. 

The study entitled "Stochastic Modelling of Water Quality 



Using Data for River Yamuna" has been carried out by sh.Aditym 

Tyagi, scientist 'S',Environmental Hydrology Division, N1H. The 

scientific helps provided by Dr.S.M.Seth, scientist 'F', 

sh.R.D.Singh,scientist 'E', sh.Avinash Agarwal, scientist 'C', 

sh.N.C.Ghosh, scientist 'C' of NIH are mentionable. 
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ABSTRACT 

In the ,past two decades, many mathematical water quality 

models have been developed to simulate physical, chemical, and 

biological processes occurring in river water. Their possible 

applications range from identifying in streaming processes 

affecting river water quality to forecasting the quality for 

operational purposes. 

It was a common practice to describe problems related to 

chemical and biological processes in river waters through 

deterministic differential equations. Since the deterministic 

model provides a single response for each set of model parameters 

and initial conditions, there is always some uncertainty, both in 

the evaluation of field data and in the use of mathematical models 

to predict the outcome of natural processes. The full 

representation of the process responses is usually too complicated 

and may be too costly to develop. Due to inherent variability and 

randomness in natural processes and their measurements, all these 

sources of uncertainty could be represented as input forcing terms 

in the balance equations. The initial conditions may be random, 

either because of the imperfect real initial conditions or because 

of the biased measurements. The model coefficients (rate 

constants) may be random due to variations in measurements. 

Number of models have been proposed in recent years which 

treat water quality processes as stochastic. In the present 

study,a time series analysis approach was applied to model nine 

years of mean monthly dissolved oxygen data observedat U/S and D/S 

sections in river Yamuna at Delhi. The data was measured and 

compiled by Central water commission, New Delhi,in a form of 

status report on water quality survey for the Yamuna system. 

The basic properties of the water quality data time series 

were determined, time and frequency-domain analysis werecarried 

out, and the depedent stochastic component was represented by 

various stochastic models. The independent residualcomponent was 

represented by probablity distribution functions. 



1.0 Thrronnurrrinil 

Water is an essential element in the maintenance of all forms 

of life, and most living organisms can survive only for short 

periods without water. This fact has resulted in the development 

of direct relationship between abundance of water, population 

density, and aquatic life. As well as being in abundant supply, 

the available water must have specific characteristics. As a part 

of the general concern for environment, water quality become an 

important water resources issue due to the increasing trend of 

pollution sources e.g. rapid population growth, rapid industrial 

development, increasing mining and petroleum operations, and too 

much use of fertilizers and pesticides in agriculture. Hence it 

becomes highly essential to protect che water resources from the 

various types of pollution. 

The proper management of water resources even on a small 

scale is very difficult. There are a large number of quality 

criteria to be considered and in most cases the level of .each 

criteria is the complex intrections. The situation is further 

exacerbated by the.  difficulties of any experimental approach in 

forecasting water quality. This has led to the growth of 

mathematical modelling as a means of predicting quality. 

The represehtation of the intrection in a system by set of 

equations is not a new idea. The classic work on oxygen sag by 

Streeter and Phelps demonstrated the possibilities. But until 

recently, the application of mathematical modelling was limited by 

the difficulty of finding analytical methods of solutions that has 

led to increasing interest in modelling. 

In the past two decades, many mathematical water quality 

models have been developed to simulate chemical, physical, and 

biological processes occuring in river waters. Their applications 

range from identifying in streaming processes affecting river 

water quality to forecasting the quality for operational purposes. 

Broadly speaking, three kinds Of mathematical approaches have 

beenused far the development of mathematical water quality models. 

They may be classified under the following headings. 

1.1 Deterministic approach: 

It was a common practice to describe the problems related to 



chemical and biological processes in river waters through 

deterministic differential equations. The deterministic approach 

has been used for predicting the steady state water quality 

conditions along a river and to predict the short term transient 

state of water quality parameters (Falkher 1972; Dresnack and 

Dobbins 1960). The models were deterministic in that they 

provided a single response for each set of model parameters and 

initial conditions. The deterministic models include DUAL II, 

SSAM, and the DOMOD series of the Ontario Ministry of the 

Environment (MOE) and Weatherbe. 

The deterministic modelling approach is important because it 

makes it possible to understand the cause and effect relationships 

that govern water quality in a river. Once cause and effect 

relationships are known, management alternatives can be explored 

and the result of any improvements and changes can be projected. 

There is always some error or uncertainty in a model. A 

mathematical model can not represent the real process perfectly, 

either there is some unknown process involved or some part of the 

representation which can not be calculated due to complexity or 

economics. 

1.2 Stochastic approach: 

The water quality variations in a river may be modelled by 

the stochastic approach in which the variation of the magnitude of 

one or more parameters of water quality are represented as a 

function of time (or space). As, there is always some uncertainty, 

both in the evaluation of field data and in the use of 

mathematical models to predict the outcome of natural processes, 

since the processes are still not completely understood and the 

full representation is usually too complicated and too costly to 

implement. There is also some inherent variability and randomness 

in natural processes and their measurements. All these source of 

uncertainty may be represented as input forcing terms in the 
balance equations. The initial conditions may also be random, 

either because the knowledge of the real initial conditions is 

imperfect or because measurements are biased by random variations. 

The model coefficient may also be random either because our 

assessment is not perfect or because of random variations in 



measurements. Inputs may also be uncertain because estimates of 

future loadings, based on projections and future waste 

technologies, may be biased. As a result of these factors the 

application of stochastic modelling approach become necessary. 

A. number of models had been proposed in recent years which 

treat water quality process as stochastic. The most common 

approach is based on using Monte Carlo techniques (Esen and Bennet 

1971; Shih 1975; Dewey 1984). Unfortunately, very often these 

techniques are limited because of the time required for the 

computations. The other techniques include MARKOV chains, 

birth-death and random walk processes and ARIMA models. The 

present study discuss the use of ARIMA models. 

1.3 Deterministic and stochastic Combined approach: 

There is also a third approach in which the water quality 

equations have been transformed from deterministic .to stochastic 

differential equations (Soong 1973; Leduc et.al  1986) used the 

Fokker-Plank equation to get the probability density function 

(pdf) of remaining CBOD and oxygen consumed, and used moment 

equations to obtain the expectation and variance of the first 

order CBOD equation. Finney et.al. (1982) developed the model to 

compute the joint and marginal pdf of CBOD and DO. In addition, 

moment equations were also developed which allowed the mean and 

variance of CBOD and DO to be calculated independently of their 

joint pdf. Dewey (1984) discussed the modification of the random 

differential equation method to include nitrogeneous oxygen demand 

(NOD) and the DO responses which had been generated directly by 

solution of the analytic equations. All rate constants and 

initial values of the vairables had been described by survey data 

mean values and estimated standard deviations or uniform 

distribution. Zeelinski (1988) developed a stochastic 

DO-CBOD-NDD model and applied to Thames River in Ontario, Canada. 

As this method is based on the set of diTfernetial equations 

such as Streeter and Phelps (1925); Dobb'in (1964) etc. which 

assumed certain simplifying assumptions like longitudinal 

dispersion in neglected; unfirom velocity along river section, 

plug flow; mixing is instantaneous and complete; DO saturation is 

temperature dependent only; variation in temperature and sunlight 

3 



neglected etc. are the known source of error. 

It is concluded that the water quality variation in a river 

may be best modelled by the stochastic approach as the 

deterministic and partial deterministic approaches are not 

suitable due to the inherent randomness exhibited and an imposing 

number of uncertainties which are associated with the various 

processes occiiring with in the stream environment. 

4 



2.0 LITERATURE REVIEW: 

A time series exists as a set of observations that are, 

statistically, sequentially dependent. The overall aim of the 

analysis is to specify the character of this dependence. Time 

series analysis is applicable to water quality data since thesE 

data frequently exhibit such dependence. The information about 

periodicities which the analysis provides can suggest natural or 

man influenced factors that may influencing the aquatic 

environment. A knowledge of the processes may lead to methods of 

controlling water quality. The two methods of time series 

anlaysis, the frequency based and the time-based approach, are 

related in that the variance spectrum function employed in the 

first method is a mathematical transofmration of the 

autocorrelation function employed in the second. Each method has 

situations in which it is the best suited for analysis. The 

frequency approach attempts to decompose a series into its 

frequency components. By so doing it identifies frequencies wnich 

may then be related to factors that cause the series to vary. The 

method also provides an estimate of the variance attributable to 

each of these factors. The frequency approach has been, 

traditionally, the one used in water resources engineering. It 

has been employed e.g., to examine temperature and dissolved 

oxygen variations in the Delawane Estuary (Thomann, 1967), the 

hydraulic behaviour of charleston Harbour (Wastter et.al. 1968), 

and variations in waste treatment plant performances (Thomann, 

1970) the time based approach of time series analysis developed by 

Box and Jenkins (1976) attempts to fit a model by expressing the 

time series as a output from a linear filter having a random input 

and consisting of several transfer functions in series. The 

method uses a minimum number of parameters. 

Early applications of the Box-Jenkins method to the water 

resources area were undertaken by Carlson and Co-workers (Carlson 

et.al, 1970). They developed parametric models for annual stream 

flow data and were able to achieve significant reductions in 

variance with one. or two parameters. In addition they employed 

the models for forecasting. McMichael and Hunter (1972) developed 

models for temperature and flow in rivers. Their models 



incorporated both deterministic and stochastic components, the 

later being obtained by the Box-Jenkins method. They found this 

type of model to be preferable from a numerical and a rational 

point of view to a purely stochastic or purely deterministic 

model. McMichael and Vigani (1972) applied Box-Jenkins techniques 

to municipal treatment system organic loadings in examining a 

paper by Wallace and Zollman (1971). They fitted models to the 

authors data and then employed the models for forecasting. 

McKerchar and Delleur (1974) developed a model and, used for 

forecasting the monthly steamflow by a multiplicative seasonal 

ARIMA ,model. Gupta and Chauhan (1986) developed a model for 

weekly irrigation requirements. Huck and Farquhar (1974) analyzed 

the hourly chloride and dissolved oxygen data. Lohani and Wang 

(1987) used the time domain analysis combined with non parametric 

transformation to analyze monthly water quality data in the Chung 

Kang river in Taiwan. More recently, Jayawardena et.al., (1989) 

used both time time-and frequency-domain analysis to model 21 

years mean monthly water quality data in the Guangzhou reach of 

the Pearl river in Southern China. In which the basic properties 

of the water quality data time series were determined and the 

dependent stochastic component was represented by various 

stochastic models. Synthetic water quality data were generated by 

using the probability distribution of the independent residuals, 

and forecasting of future water quality data was done using a 

Box-Jenkins type difference model. 



3.0 METHOD OF ANALYSIS 

Any time series can be expresqed as a linear combination of a 

trend component, a periodic component, and an independent residue 

component in the form 

Time series = trend component +periodic component + dependent 

stochastic component + independent residue 

component (1) 

When the components are nonlinearly related, the relationship can 

often be made linear by taking logarithms.Time series analyses 

involves the decomposition of the series in to constituent 

components. 

A series may be stationary or nonstationary. Some 

nonstationary series may be made stationary by suitable treatment. 

Preliminary Tests: 

3.1 Trend analysis: 

A steady and regular movement in a time series through which 

the values are, on average, either increasing or decreasing is 

termed a trend. This type of behavior can be local, in which case 

the nature of the trend is subject to change over short intervals 

of time, or, on the other hand, we can visualize a global trend 

that is long lasting. Long term trends are more appropriate to the 

study of hydrological time series. 

3.1.1 Tests for detection of trend: 

A number of tests exist for the detection of a trend, 

e.g.,the turning point test,Kendall s rank correlation test 

(Kottegoda 1980), and regression test for linear trend. 

i) Turning point test 

In an observed sequence xt, t=1,2,3....,N, a turning point or 

POCCUrsattinletr-i—ifx.is  either greater than xi_ l  and x1+1  or 

less than the two adjacent values. The number of turning points p 

in a series is expressed as a standard normal variate in the form: 

p - p 
z -  (2) 

iVar(p) 
where p = the expected number of turning points in a random series 

2(N - 2) 
3 

Var(p) = the variance of p 
(16N-29) 

90 
N r  the number of observations. 



ii) Kendall's rank correlation test: 

This test is also based on the proportionate number of 

subsequent observations which exceed a particular value.For a 

sequence x ,x  ,x ,The standard procedure is to determine the 
1 2 

number of times, p, in all pairs of observations (x.,x.0 > i) 

that x. is greater than x. ; the ordered(i,j) subsets are (i=10 

=2,3,4,  ,N),(i=2,j=3,4,5,....,N),...,(I=N-1,j=N). The test is 

carried out using the statistic T defined as: 
4p  

T 1 (3) N(N - 1) 
The statistic is then expressed as a standard normal variate in 

form: 

T T  
Z (4) 

17/iT(F) 
where the expected number of if the series is random (04f 

random); 

and var(i) = its variance 
2(2N + 5)  
9N(N - 1) 

The computed standard normal variate is then compared with 

the standard normal variates from published tables at a given 

level of significance. If the calculated value of z is within the 

region•of acceptance, the hypothesis of no trend is accepted.If a 

trend is detected, it can be removed by fitting a regression 

equation.An approximate model for describing trend is the 

polynomial type 

X
t= x +a t +a t

z
+a t

s
+ +a tn-fr (5) 

0 1 2 9 

in which 2-- is a residual term. 

iii)Regression test for linear trend: 

This is an alternative type of test to be used if it is 

thought that the trend is approximately linear. Standard methods 

of linear regression are used for the purpose.If we refer to 

equation (4), the hypothesis to be tested in this case is a = 

0.The first step is to estimate a and and its variance which are 

denoted by a and aa 
respectively; the statistic t = a/a is then a 

tested 

3.2 Periodicity analysis: 

3.2.1 Detection of Periodicity: 

Detection of periodicity can be made by the 

auto-correlation (time-domain) and/or spectral ( frequency-domain) 

a 



analysis.If the series is periodic, the auto-correlogram will also 

be periodic. In the spectral density function, periodicity will 

appear as a peak at .a frequency corresponding to the periodicity. 

The auto-correlation function and the spectral density function 

assuming stationarity, are given by 
m-k 

 

NI_If
y ( x,- )(xt+k- ) 

twt 

  

r
k 
- 

 

(6) 

   

(xt-R )2  Ni.{ 2 
and 

M -11. 

G(f) = 2 At[ r
o 
+ 2 2 r cos(2nfk) + rm cos(2nfk)] (7) 

K 
K=1 

where, 

r = the serial auto correlation coeff. at lag k; 

X t = the observation at time t ; 

G(f) = the raw spectral density function; 

f = frequency; 

At time interval between two observation; and 

M = the maximum lag considered in the auto-correlogram 

.2.2 Representation of periodicity: 

If periodicity exists, it can be represented by a 

Fourier Series. The trend, if any, is assumed to have been removed 

at this stage. The Fourier series representation takes the form - 

h 

= p 2  [ A. cos(2niT/p) + H. sin(2nir/p) (8) 
1 1 

i=1 
where, 

m the harmonically fitted means at period T(T =1,2,..p); 

= the population mean; 

h = the total number of harmonics considered(=p/2 or(p+1)/2 

depending on whether p is even or odd); 

p = the period; and 

A.,B. = Fourier coefficients of ith  harmonic. 

i = integer index identifying harmonic 

It is to be noted that the period p is referred to the first 

harmonic. For other harmonics, the arguments of the trigonometric 

function in equ. 10 are 2nr/(p/i). 



The best estimate of the Fourier coefficients can be obtained by 

minimizing the 2(m1- xT
)2  ,as given below: 

2  A.= 7  x cos (2n1r/p) , 
p L T 
T=1 

2 
H.= 2 x sin (2nir/p) , 

p T 
T=1 

N/p 

x = 
X T +p(i-i) T N L=t 

For monthly data p =12, and therefore 

practical purpose, it may not be necessary to expand the Fourier 

series up to the maximum number of harmonics. By examining the 

cumulative periodigram, it is possible to determine the relative 

significant of each harmonic and thus obtain the maximum number 

significant harmonic h
*(Salas et al. 1980). The cumulative 

periodigram P., defined in the following , will show a rapidly 

rising part upto h* and increase slowly thereafter upto its 

maximum value of unity at h. 

z] /2 

V 2 

P 
(x - p) 

T=1 

where, 

1 to j, in decreasing order of magnitude 

the estimate of p is the mean of x 

Now the periodic component 'mT
' should be deducted from the 

series Xt' 
which resulted in the following new series 'Zt 

Zt  = X t  - m (13) 

where, 

Z
t 

= data series at time t, after removal of trend and 

periodic components. 

mt 
= periodic component of series X t 

In general: time series of environmental derivation fall into 

one of the following four categories: 

1. Time series that are composed of some periodicity, a certain 

10 

1=1,2,... ,h.  

1=1,2,... ,h  

 

h=6. But for themost 



degree of randomness, plus a mean with a time trend. Series of 

this type might be observed in cases where stream water quality is 

monitored over a relatively long period of time in an area 

experiencing industrial development. 

are largely periodic and may include several Time series that 

distinct frequencies. Stream water temperature and tidal behavior 

generally result in time series of this type. 

Time series that are composed of some periodicity and some 
in the can be found 

time records of dissolved oxygen in 

Time series that appear to be characterized almost entirely 

average daily sewage flow to a waste treatment plant might yield 

by random variation. Over a relatively short period of time, the 

this type of time series. 

It must be emphasized that the categorization of a time 

series is dependent not only on the length of record but also on 

the particular statistic of the parameter of interest which is 

used. For example, although the average daily sewage flow may give 

a time series .of type (4), the hourly flow may exhibit behavior 

that would assign it to type (2) or (3). 

3.3 Modelling of Stochastic Component 

The stochastic component of the series is obtained by 

substracting the periodic component defined by Fourier series from 

the trend free series. The remaining series may have only 

dependent stochastic component or independent stochastic component 

or both the dependent and independent stochastic components. 

Before the further analysis it isnecessary to test the series for 

dependency or independency. 

3.3.1 General Steps in Model Building 

The main object of Box-Jenkins analysis is to find a 

good model that describes how the observations in a single time 

series are related to each other.An ARIMA model is an algebraic 

statement showing how a time series variable (z1
) is related to 

= C± 21-1 
+ a

t 
Equation (14) is an example of an ARIMA model. It says that zt

is 

degree of randomness. An example of this type 

a river or estuary.1 

its own past values 

algebraic expression

ZI 

 

(z ,z ,z , 
t.-1 1-2 L-9 

 

 Consider the 

 

(14) 

11 



Choose one or more ARIMA 

models as candidates 

Estimate the parameters 

of the model(s) chosen 

at stage 1 

Check the candidate 

model(s) for 

adequacy 

if yes Is model 

satisfactory ? 

if no 

related to its own immediately past values (z r). C is a constant 

term. is a fixed coefficient whose value determines the 
S 

 

relationship between zt 
and z . The a is a probablistic "shock" 

t-t 
element. 

The term C, z ,and aare each components of zt
.0 is a 

t-t t  
deterministic (fixed) component, I z is a probabilistic 

I t 
component, since its value depends in part on the value of z 

and, a is a purely probalistic component. Together C and 

0 z represent the predictable part of while at 
is a residual 

1 L-i 

element that cannot be predicted within the ARIMA model. However, 

the a term assumed to have certain statistical properties. 

The process of model building development by Box and Jenkins 

involved three basic stages e.g. ,identification, estimation, and 

diagnostic checking . The three stage procedure is summarized 

schematically in fig.l. 

Stage 1:Identification 

Stage 2:Estimation 

Stage 3:Diagnostic checking 

Forecast 

Fig . 1 
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Stage I: Identification 

At the identification stage we use two graphical devices to 

measure the correlation between the observation within a single 

data series. These devices are called as estimated 

autocorrelation fuction (abbreviated acf) and an estimated partial 

autocorrelation function(abbreviated pacf). The estimated acf and 

pacf measure the statistical relationships within a data series in 

a somewhat crude(statistically inefficient) way. Nevertheless, 

they are helpful in giving us a feel for the patterns in the 

available data. 

The next step at the identification stage is to summarize the 

statistical relationship within the data series in a more compact 

way than is done by the estimated acf and pacf. Box and Jenkins 

suggest a whole family of algebraic statements (ARIMA models) from 

which we may choose. Equation (14) is an example of such a model. 

We use the estimated acf and pacf as guides in choosing one 

or more ARIMA models that seem appropriate. The basic idea is 

this: every ARIMA model, say as eqation (14), has a theoretical 

acf and pacf associated with it. At the identification stage we 

compare the estimated acf and pacf calculated from the available 

data with various theoretical acf's and pacf's. We then 

tentatively choose the model whose theoretical acf and pacf most 

closely resemble the estimated acf and pacf of the data series. 

Note that we do not approach the available data with a rigid, 

preconceived idea about which model we will use. Instead, we let 

the available data "talk to us" in the form of an estimated acf 

and pacf. 

Which ever model we choose at the identification stage, we 

consider it only tentatively: it is only a candidate for the final 

model. To choose a final model we proceed to the next two stages 

and perhaps return to the identification stage if the tentatively 

considered model proves inadequate. 

Stage 2: Estimation. 

At this stage we get precise estimates of the coefficients of 

the model chosen at the identification stage. For example, if we 

tentatively choose equation (14) as our model, we fit this model 

13 



to the available data se ies to get estimates of 0
1 
 and C. This 

stage provides some warning signals about the adequacy of our 

model. In particular, if the estimated coefficients do not satisfy 

certain mathematical inequality conditions, that model is 

rejected. 

Stage 3:Diagnostic checking 

Box and Jenkins suggest some diagnostic checks to help in 

determining whether the estimated model is statistically adequate 

or not. A model that fails these diagnostic tests is rejected. 

Furthermore, the results at this stage may also indicate how a 

model could be improved. This leads us back to the identification 

stage. We repeat the cycle of identification, estimation, and 

diagnostic checking until we find a good final model. As shown in 

fig. 1, once we find a satisfactory model we may use it for 

forecasting purposes. 

The iterative nature of the three-stage Box-Jenkins modeling 

procedure is important. The estimation and diagnostic-checking 

stages provide warning signals telling us when, and how, a model 

should be reformulated, We continue to reidentify, reestimate, and 

recheck untill we find a model that is satisfactory according to 

several criteria. This iterative application of the three stages 

does not guarantee that we will finally arrive at the best 

possible ARIMA model, but it stacks the cards in our favor. 

3.3.2 Analytical toots for AMNIA Modelling 
The two analytical tools estimated autocorrelation 

function(acf) and estimated partial autocorrelation function(pacf) 

are very important at the identification stage of the Box-Jenkins 

modelling procedure. They measure the statistical relationship 

between observations in a single data series. These are most 

Jseful when presented in their graphical forms as wellas in their 

lumerical forms. 

i. Estimated autocorrelation function:- 

The idea in autocorrelation analysis' is to calculate a 

zorrelation coefficient for each set of ordered pairs Czt, ztroc
) 

pf the same series and the resulting statistic is called an 

autocorrelation coefficient which is represented by the symbol 

14 



rk, The graphical representation of autocorrelation with the lag k -

is called auto correlogram. 

An estimated autocorrelation coefficient (r ) is not 

fundamentally different from any other sample correlation 

coefficient. It measures the direction and strength of the 

statistical relationship between ordered pairs of observations on 

two random variables. It is dimension less number that can take on 

values only between -1 and +I, value of -1 means perfect negative 

correlation and a value of +1 means perfect positive correlation. 

If r =0 then Z kand Zt are not correlated at all in the available L= 

data. 

The standard formula for calculating autocorrelation coeff. 

is given by equation (6). Equation (6) can also be written more 

compactly since z is defined as (z -z), substituting accordingly 

and (6) becomes: 
n-k 

z
t 

z
t+k 

L = 1 r - 
k 

2(z  2 
) 

 

L=1 

Box and Jenkins (1976) suggest that the maximum number of useful 

estimated autocorrelations is roughly N/4, where N is the number 

of observations. 

ii. Estimated partial autocorrelation functions- 

An estimated partial autocorrelatinns functions (pacf) is 

broadly similar to an estimated ac-f. The estimated pacf is used as 

a guide along with the estimated acf in choosing one or more ARIMA 

models that might fit the available data. 

'he idea of partial autocorrelations analysis is that we want 

to measure how z and Z
t+k are related but with the effects of the 

interesting z's accounted for (i.e adjusting the impact ofany z's 

that fall between the ordereo pairs in question). The estimated 

partial autocorrelations coefficient 'measuring this relationship 

between Z
t and Zis desingedby statistic kk. 

The most accurate way of calculating partial autocorrelation 

coefficient is to estimate a series of least square regression 

coefficient. But this mettod is complicated and require a large 

amount of calculation and computer memory requirement as the 

(15) 
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number of lag increase. There is a slightly less accurate though 

computationally easier way to estimate the 0kk coefficients. It 

involves using the previously calculated autocorrelation 

coeffecients(r ). 
k 

As long 85 the data is stationary the following set of 

recrusive equations gives fairly good estimates of the partial 

autocorrelations. 

r
k 

k—i 

r 
k 

kk
— 

k—i 

2 ok_14 

(k = 2,3,4,  

where, 

= 0 (Pks j 01—tj k 0k k—te j 

k = 2,3,4,  , j = 1,2,3,  k-1. 

For an independent series,the population correlogram is equal 

to zero For k=0. However samples of independent time series, due 

to sampling variability, have r
k 

fluctuating around zero but they 

are not necessarily equal to zero. In such case it is useful to 

determine the probability limits for the correloqram of an 

independent series. Anderson(1941) gave the limits- 

1 t 1.96 AN-k-1 

(17) 

rk(95 %) - 

 

(19) 
- k 

and 

1 ± 1.96 AN-k-1 
r
k
(99 %) -  (20) A 

- k 

for the 95 percent and 99 percent probability levels respectivaly 

and N is the sample size. 
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The another way of testing the independecy is to calculating 

the T-value for each rk 
to measure its statistical 

siznif.icance.Any absolute t-value larger than 2 indicates that tbe 

corresponding rk  is significantly different from zero. The 

t-statistic for r is 

t - 
k
- p

k (21) 

  

r
k S( r

k 
) 

where, 

r = calculated value of autocorrelation at lag k 

p = hypothesized value (= zero) 

S ( r ) = estimated standard error which is determined 

following formula 

by the 

S(r ) 

the t-statistic for Okk  is- 

t(tPkk)  

1/2 
k-t -1/2 

^ 

(Pkk- #kk 

s(cPkk)  

[ 1 

+ 2 2 r,2   

 

where, 

= estimated standard error which is given as- 

S(0 ) = N
-1/2 (25) 

kk 
3.3.3 Modelling of different ARIMA models and their associated 

charcteristics 

,3.3.3.1 Identification: 

At the identification stage we compare the estimated acf 

and pacf with various theoretical acf"s and pacf"s to find a 

match. We choose as a tentative models from the ARIMA process 

whose theoritical acf and pacf best match the estimated acf and 

pacf. In choosing a tentative models we keep inmind theprinciple 

of parsimony 1..e we want a models that fits the given realization 

with the smallest number of estimated parameters. 

Table 2 state the major characteristic of theoritical acf's 

and pacf's for stationary AR,MA, and mixed (ARNA) process. 
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Table 2 

Primary distinguishing characteristics of theoritical acf's 

and pacf's for stationary process. 

Process acf pacf 

AR 

MA 

ARMA 

Tails of towards zero(expon 

ential decay or damped sine 

wave) 

Cuts off to zero 

(after lag q) 

Tails off toward zero. 

cuts off to zero. 

(after lag p) 

Tails off toward zero 

(exponential decay or 

damped sine wave). 

Tails off toward zero 

The ARIMA models of higher order (e.i.,order greater than 2) 

do not occur often in practice. The characteristics of Commonly 

used processes with their mathematical expressions, and their 

associated condition are discussed below. 

AR processes: 

All AR processes have theoretical acf's which tail off toward 

zero. This tailing off might follow a simple exponential decay 

pattern, a damped sine wave, or more complicated decay or wave 

patterns. But in all cases, there is a damping out toward zero. An 

AR theoritical pacf has spikes up to lag p followed by a cutoff to 

zero, where p is the maximum lag length for the AR terms in a 

process; it is also called the AR order of a process. 

Mathematically,the commonlly used AR processes are represented as 

follows: 

AR(1):The common algebraic form of a stationary AR(1) process is: 

z =c+Oz +a 
it-1 

(26) 

in backshift form this can be written as follows: 

(1 - 0
18 ) it 

 = a
t 

(27) 

The estimated AR coefficients must satisfy the stationary 

requirement, according to which absolute value of 0 should be less 

than one i.e: 

1 0/1 1 (28) 

AR(2): The algebraic and backshift form of AR(2) process are given 

: 
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=c + q5 z + z +a 
I 2 L-2 

(29) 

2 - 
=a  

t 
(30) 

For an AR(2) process, the stationary requirement is a set of three 

conditions: 

i 02 1 < 1  
qb

2 
 + cki  < 1 (31) 

- (Pi  < 1  
MA processes: 

An MA process has a theoretical acf with spikes up to lag q 

followed by a cutoff to zero, where q is the maximum lag, also 

called the MA order of the process. Furthermore, an MA process has 

a theoretical pacf which tails off to zero after lag q. This 

tailing off may be either some kind of exponential decay or some 

type of damped wave pattern. In practice, q is usually not larger 

than two for nonseasonal data.The mathematical expressions for 

MA(1) and MA(2) processes with their invertibility conditions are 

given below. 

The algebraic form of MA(1) and 114(2) processes are: 

z
t 
 = 

1 
c-ea +a  

t 
(32) 

1-1 

z - c - ei a 1-1 
- e

2 
a 

l-Z 
+ a

t 
(33) 

I 
In backshift form the 114(1) and 116(2) processes can be written as: 

(1 - 6' B) a = -Z. (34) 
L i t 

(1 -0 19-992)a = Z- (35) 
1 2 L t  

The MA processes must satisfy the invertibility conditions 

which are identical to the stationary requirements on AR 

coefficients. 

For 114(1) process, invertibility requires that the absolute 

value of e
I be less than one: 

1 ell < 1 (36) 

For 114(2) process the invertibility requirement is a set of 

conditions on e and e : 
K 1 2 

I e 
+ C9 < 1 

2 

e< 1 
2 1 

< 1 

(37) 
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ARMA processes: 

Mixed processes have theoretical acf's with both AR and MA 

characteristics.The acf tails off toward zero after the first q-p 

lags with either exponential decay or a damped sine wave. The 

theoretical pacf tails off to zero after the first p-q lags. In 

practice, p and q are usually not larger than two in a mixed model 

for nonseasonal data. 

The mathematical expressions for ARMA(1,1) and ARMA(2,2) processes 

are as follows: 

z =c + z - e a +a  
t 1 1-/ 1 t-/ 

z =c+oz -e a +0 z - e a +a 
1 1-1 1 t-1 2 t-2 2 t-2 

The backshift form of ARMA(1,1) and ARMA(2,2) are: 

(1 - Oi 
 B) i

t 
 = (1 - B) at 

(40) 

(1 - 0, - 02 
 0) = (1 - es 8 - 9

Z 
  82) a 

t. 
(41) 

The ARMA(1,q) and ARMA(2,q) processes should satisfy the 

stationary requirement of AR(1) and AR(2) processes respectively. 

Similarly, the ARMA(p,1) and ARMA(p,2) should meet the 

invertibility requirements of MA(1) and MA(2) processes 

respectively, as explained earlier. 

3.3.3.2 ESTIMATION 

At the identification stage we tentatively select one 

or more models that seem likely to provide parsimonious and 

statitically adequate representations of the available data. In 

making this tentative selection, a rather large number of 

statistics (autocorrelation and partial autocorrelation 

coefficients) were calculated to make proper judgement. For 

example, with N observations about N/4 autocorrelation and partial 

autocorrelation coefficient were calculated. Estimating so many 

parameters is not really consistent with the principle of 

parsimony. This nonparsimonious procedure is justifiable only as 

an initial, rough step in analyzing a data series. The broad A 

overview of data contained in the estimated acf and pacf is that 

it gives a right direction to identify one or more appropriate 

(38) 

(39) 
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models. 

ARIMA coefficients estimation can be made by three different 

criterion discussed as below. 

Method of moments 

Method of least square 

Method of maximum likelihood. 

When selecting an estimator or a method of estimation the two 

important properties should be considered. It is preferable to 

have both desirable properties: an unbiased estimator and a 

minimum mean square error(MSE) estimator. In some cases an 

estimator may be unbiased but it may not be minimum MSE estimator. 

In other cases it may be the opposite. Furthermore, estimators 

often are biased and do not have a menimum MSE. Therefore, when 

selecting among alternative estimators, a criteria is to select 

the estimator with the smallest bias and the smallest MSE. When 

this is not possible, the analyser must judge which of the two 

properties is more desirable for a particular case and select the 

estimator accordingly. 

Box and Jenkins(1976) favour estimates chosen according to 

the maximum likelihood (ML) criterion. Mathematical statisticians 

frequently prefer the ML approach to estimation problems because 

the resulting estimates often have attractive statistical 

properties. However, finding exact ML estimates of ARIMA models 

could be cumbersome and may require relatively large amounts of 

computer time. For this reason, Box and Jenkins suggest the use of 

least squares (LS) criterion.lf the random shocks are normally 

distributed then LS estimates are either exactly or very nearly ML 

estimates. 

The estimation of parameters by the method of moments is 

usually not difficult to obtain and it is simpler than the 

estimation by the other methods. Except for the estimatate of the 

mean, the moment estimates of other parameters are usually biased, 

although adjustments can be applied to make them unbiased. Moment 

estimates are asymptotically efficient when the underlying 

distribution is normal. For skewed variable though, the 

moment estimators generally are not asymptotically efficient. 

As, in the actual field problems lower order ARIMA models are 
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used, quite successfully. Hence in present study the ML criterion 

(Box-Jenkins,1970) is used for estimating the model parameters. 

3.3.3.3 DIAGNOSTIC CHECKING 

At this stage we decide if the estimated model is 

statistically adequate. Diagnostic checking is related to 

identification in two important ways. First, when diagnostic 

checking shows a model to be inadequate, we must return to the 

identification stage to tentatively select one or more other 

models. Second, diagnostic checking also provides clues about how 

an inadequate model might be reformulated. 

The most important test for the statistical adequacy of an 

ARIMA model involves the assumption that the random shocks are 

independent. A statistically adequate model is one whose random 

shocks are statistically indepedent, meaning not autocorrelated. 

In practice we can not observe the random shocks (a), we do have 
^ 

the residuals (a) calculated from the estimated model. At the 

diagnostic checking stage we use the residuals to test hypothesis 

about the independence of the random shocks. 

The basic analytical tool at the diagnostic checking stage is 

the residual acf. A residual acf is basically the same as any 

other estimated acf. The only difference is that we use the 
^ 

residuals (a) from an estimated model instead of the observations 

in a realization (z 
I.
) to calculate the autocorrelation 

coefficients. To find the residual acf we use the same formula( ), 

but we apply it to the estimation stage residuals: 

n-k 

(a- a ) (a - a) 
LA I.   tOc t=i 

(42) 

( a 
L
L4 t 
=1 

a) 

The a
t in parentheses on the LHS of (42) indicates that we are 

calcualting residual autocorrelations. The idea behind the use of 

the residual acf is this: if the estimated model is properly 
^ 

formulated, then the random shocks (a ) should be uncorrelated. If 
I. 

the random shocks are uncorrelated, then our estimates of them 

(a )should also be uncorrelated on average. Therefore, .the 

(a) 
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residual acf for a properly built ARIMA model will ideally have 

autocorrelation coefficients that are all statistically zero. 

t-test: 

Having calculated and plotted the residual autocorrelations, 

it is important to determine if each is significantly different 

from zero. The Bartlett's approximate formula,as introduced 

earlier in equ.(23), to estimate the standard errors of the 

residual autocorrelations. When applied to residual 

autocorrelations, the formula is: 

k -1 172 

sCrk(a)] = ( 1 + 2 2 r.(a) z ) 
1=1 

(43) 

Having found the estimated standard errors of rk(a) from equ. 

(43), the null hypothesis H
o
: p (a) = 0 for each residual 

autocorrelation coefficient can be tested. The symbol p and the a 

in parentheses indicate that we are testing a hypothesis about the 

random shocks in a process. We do not have Pk(a) values available, 

but we have estimates of them in the form of the residual 

autocorrelaTIONS r (a). We test the null hypothesis by calculating 

how many standard errors (t) away from zero each residual 

autocorrelation coefficient falls: 

- r (a) - 0 
t  k  

sEr (a)] 

In practice,if the absolute value of a residual acf t-value is 

less than (roughly) 1.25 at lag 1,2,and 3,and less than about 1.6 

at larger lags, we conclude that the random shocks at that lag are 

independent. We could be wrong in this conclusion, ofcourse, but 

we always run that risk when making decisions based on sample 

information (Pankratz,1983). 

If any residual acf t-value is larger than the critical value 

suggested above, we tentatively reject the.  null hypothesis and 

conclude that the random shocks from the estimated model are 

correlated and that the estimated model may be inadequate. We then 

tentatively identify a new model and estimate it to See if our 

suspicion is justified. 

Chi-squared test: 

23 
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This is the another way of diagonostic checking, in this the 

following.joint null hypothesis about the correlations among the 

random shocks- 

H: p 
t
(a) = p

z
(a) = P(a) = 0 (45) 

o  
with the test statistic 

IC 

0
* 
= N (N + 2) (N - k)-lrz(a) (46) 

k=1 

where N is the number of observations used to estimate the model. 

The statistic 0
*approximately -follows a chi-squared distribution 

with (K-m) degree of freedom, where m is the number of parameters 

estimated in the ARIMA model: This approximate chi-squared test is 

sometimes referred to as a Ljung-Box test. If 0*is large 

(significantly different from zero) it says that the residual 

autocorrelatian as a set are significantly different from zero, 

and the random shocks of the estimated model are -probably 

autocorrelated. We should then consider refOrmulating of the 

model. 

3.4 Modelling of Independent Stochastic Component 

After indentification of the seasonol stochastic component, 

it was separated from the series. The new series after 

separation, is called as the independent stochastic component. The 

modelling of independent stochastic component is done by fitting 

the probality distributions. Now the question arises that which 

probability distribution should be fitted to the given data. The 

choice is wide, and it is likely that several probabilty 

distributions will fit the data equally well; the decision which 

to use must then be subjective. This is particularly true if the 

sample of data volume is small, since tests for the goodness of 

fit-of possible distributions will have little power(i.e. these 

will be high probability of accepting the hypothesis that the data 

are consistent with the given distribution, even when this 

hypothesis is false). 

3.4.1 Fitting a probability Distribution 

A probability distribution is a function representing 

the probability of occurence of a random variable: By fitting a 

distribution to a set of water quality data, a great deal of the 

probabilistic information in thc,  sample can be compactly 
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summarized in the function and its associated parameters. Fitting 

distributions can be accomplished by the method of moments or the 

method of maximum likelihood. 

i. Method of Moments 

In this method it is considered that the good estimates of 

the parameters of a probability distribution are those for which 

moments of the probability density function about the origin are 

equal to the corresponding moments of the sampple data. If the 

data values are each assigned a hypothetical mass equal to their 

relative frequency of occurence(l/n) and it is imagined that this 

system of masses is related about the origin x=0, then the first 

momentofeachobservationx,about the origin is the product of 

itsmomentarmx.and its mass y
n, and the sum of these moments 

over all the data is the sample mean, given as follows- 

(47) 

This is equivelent to the centroid of a body. The 

corresponding centroid of the probability density functions is- 

P = x f(x) dx (48) 
a 

ii. Method of Maximum Likelihood 

In this method it is considered that the best value of a 

parameter of a probability distribution should be that value which 

maximizes the likelihood or joint probability of occurence of the 

observed sample. Suppose that the sample space is devided in to 

intervals of length dx and that a sample of independent and 

identically distributed observation x ,x ,....,x is taken. The 
1 2 

valueoftheprohabilitYdensityfor and the 

probability that the random variable will occur in the interval 

including x. is f(x)dx. Since the observations are independent, 

their joint probability of occurence is given by the product 

Cf(x ) dx } C f(x )
n)dx/ 2 = 

N  
n f(x.) dx

n
, and since 

L=i 
the intery size dx is fixed, maximising the joint probability of 
the observed sample is equivalent to maximising the likelihood 
function- 
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= f(x) (48) 

Because many probability density functions are exponential, it is 

sometimes more convenient to work with the log-likelihood 

function- 
N 

111(1- 11-11f"" 
(49) 

I. 
i=1 

The method of maximum likelihood is the most theoritically 

correct methoc of fitting probability distributions to data in the 

sense that it produces the most efficient parameter 

estimates-those which estimate the population parameters with the 

least average error. But, for some probability distributions, 

there is no analytical solution for all the parametrs in terms of 

sample statistics, and the log-likelihood function must then be 

numericallly maximized, which may be quite difficult. In genral, 

the method of moments is easier to apply then the method of 

maximum likelihood and is more suitable for practical analysis. 

3.4.2 Various Probability Distributions for Hydrologic Variables 

In this section, a selection of probability distributions 

commonly used for hydrologic variables is presented. 

i. Log-normal Distribution:- 

This has the following 

-(log
e
y 

1  
f(y) -  exp  y a 121T 2 a2 

functional form 

p )2  I 
dY, 0 <y <a (50) 

The properties of this distribution are- 

that the variable Y=logey has a normal or ganssian 

distribution with mean p and variance a
z
. 

that is unimodal, skewed, with a 'tail' extending to right. 

ii. The two-parameter Pearson Type III (gamma) distribution: 

This has the following functional form - 
P-1 

exp(- --) dy 
a a 

f(y)dy - 

 

0<y<a ,p>1 (51) 

 

a  rP 

Some properties of this distribution are- 

i) that its shape is determined by the two parameters a and p. 
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that its mean is ap and its variance a
zp. 

that it is unimodal for p>l, skewed, with a 'tail' 

extending to the right. 

The parameters a and p may be estimated by the method of 

moments or by the method of maximum likelihood. 

The three Parameter Pearson Type HI distribution: 

This distribution has the following functional form 

p-± 

   

Y -a  
) ]  dy, a<y<a, a>0 &p>2 

f(y)dy= a  1 

 

(52) 

which is determined by the three parameters, p, a ,and a. These 

may be estimated either by the method of moments or the method of 

maximum likelihood 
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4.0 Data Analysis 

The monthly observation for dissolved oxygen of the river 

Yamuna at upstream and downstream of delhi were used for the water 

quality analysis. Fig. 2 and fig. 3 shows the time series of 

mean monthly dissolved oxygen concentrations for the period 

1977-1985. The data were observed and edited by the CWC. 

4.1 Trend Component 

The turning point test and Kandall's rank correlation test 

were carried out for the detection of trend. For U/S section the z 

value (-1.64)indicated no evidence of trend at the 57. level of 

significance(standard normal variate from published table at 95 % 

level of significance is ± 1.96). This was confirmed by tests for 

the detection of linear trends (t value -1.64 which is less than 

t-criticaI + 1.98).For D/S section the z value (-3.08) indicate 

the existance of trend component. Further it also shows the 

existance of linear trend (t value -3.45). 

Kottegoda (1980) suggest that only annual data should be 

used for the analysis of trend by virtue of which the periodic 

component P
t  is suppressed.The Kendall's rank co-rrelation tests 

were carried out using annual data which indicated that there were 

no existance of trend component at both U/S and D/S sections of 

the river as the calculated z-values are less than their critical 

values. 

For U/S section z = -0.417, and 

For U/S section z = -1.67 

4.2 Periodic Component: 

Periodicities in the series were identified through the 

construction of auto-correlogram and the spectrum analysis. 

For U/S section auto-correlogram (Fig.4) and the spectral 

density function (Fig.5) show the periodic character of the 

Dissolved oxygen concentration. From the spectral density 

function it is clear that only first two harmonics are 

significant for U/S section. Table 2 summarizes the results of 

the harmonic analysis for U/S section. 
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Table 2. Summary of Harmonic Analysis of U/S Data 

harmonic A 
I. 

8  I P I. 
1 -0.032 -0.464 0.017 

2 -0.010 -0.016 0.017 

3 0.301 0.330 0.032 

4 -0.684 0.262 0.074 

5 0.459 -0.265 0.096 

6 -0.437 0.0 0.111 

Similarly, for D/S section auto-correlogram (fig.6) and 

spectral density function (Fig.7a) show the periodic 

characteristics of dissolved oxygen data. The Sp density function 

shows that all the six harmonics are significant and hence should 

be retained while substracting the periodic component from the 

original series. Table 3 summarises the results of harmonic 

analysis at D/S section. 

Table 3: Summary of Harmonic analysis of D/S Data 

harmonic A
L 

8 
L P L 

1 0.628 0.409 0.098 

2 -0.024 -0.270 0.111 

3 0.166 -0.075 0.117 

4 -0.274 -0.019 0.130 

5 0.047 0.530 0.180 

6 0.008 0.00 0.180 

4.3 Dependent Stochastic Component: 

Several ARMA & ARIMA models were used to describe the 

dependent structure of the stochastic component from the trend & 

periodicity free series. 

For U/S section, auto-correlation function (acf) and partial 

auto-correlation function (pacf)were calculated for lags 1 through 

27.The acf and pacf were plotted in figs.7band 8. The estimated 

acf and pacf suggested a higher order model which is prctically 

not justified as the dissolved oxygen depend on the past days 

rather than past months. Further, the estimated acf drops 

off slowly toward zero, which gives an indication of 
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lag acf t-value 

   

1 0.012 0.072 

2 0.058 0.600 

3 0.137 1.417 

4 -.036 -.365 

5 -.182 -1.84 

6 -.226 -2.23 

7 -.115 -1.08 

-.112 -1.04 

9 -.246 -2.27 

non-stationarity character of series mean. The differencing 

technique were applied to remove non stationarity as suggested by 

Box-Jenkins( 1976) 

The first differences of DO data at U/S do not show any 

periodicity as shown by Sp.density function plotted in fig.9,which 

was removed automatically by differencing and hence no harmonic 

analysis was required for the differenced data. The estimated 

acf of first differences of DO data drops off rapidly to zero 

showing that the non stationarity is no more present in the 

differenced series. The acf and pacf were plotted in figs. 10 and 

11 respectively. On the basis of estimated acf and pacf it appears 

reasonable to try the ARIMA(1,I,0), ARIMA(2,1,0),and ARIMA(1,1,1) 

models. The residual acf were used for diagonostic checking to 

test the hypothesis that the shocks of the applied model are 

statistically independent. The residual acf were calculated along 

with their t-values. The residual acf were plotted for 

ARiMA(1,1,0), ARIMA(2,1,0),and ARIMA(1,1,1) in figs. 12,13,and 14 

respectively. Out of these three models ARIMA(2,1,0) is the best 

choice as the t-value for first 5 lags is insignificant in the 

residual acf of ARIMA(2,1,0),while ARIMA(1,1,0) residual has a 

significant t-value (more than 2) at lags 3,6,9,and 15 and 

ARIMA(1,1,I) residuals has t-value in the same pattern as 

ARIMA(2,1,0).Further, it is clear that among the ARIMA(2,I,0) and 

ARIMA(1,1,1) models, the ARIMA(2,1,0) is the best alternative as 

it has smaller t-values in the initial lags. The residuals of 

ARIM4(2,I,0) is tabulated in table 4. 

Table 4: Residual acf of ARIMA(2,I,0) for . U/S section 

44 



1 1 1 1 1 1 9 1 T 

o- 

uonDionoo—olny 

45 

— 

4- C 
00 

ci 

0 



4
-0

-1
-4

-*
 P

a
rt

ia
l A

u
to

—
co

rr
e
la

tio
n
 c

o
e
ff
. 

U
p

p
e

r 
c
o

n
fi
d

e
n

c
e

 l
im

it
 (

9
5

 s
a

) 
e
-e

-4
3-

0-
0  
L

o
w

e
r 

c
o

n
fi
d

e
n

c
e

 l
im

it
 (

9
5

 F
s
) 

L
a
g
, 
k
 

F
ig

.1
6
 :
 P

a
rt

ia
l 
A

u
to

—
c
o
rr

e
la

ti
o
n
 f
u
n
c
ti
o
n
 o

f 
D

O
 s

e
ri
e
s
 a

t 
D

/S
 o

f 
D

e
lh

i 
o
n
 r

iv
e
r 

Y
a
m

u
n
a
 (

a
ft
e
r 

re
m

o
v
in

g
 p

e
ri
o
d
ic

 c
o
m

p
o
n
e
n
t)

. 

Partial Auto—correlation  



N- 
4- 

0) 
 
cn 

0 

- 

E 
=. 

0 . •
E  

b o o  
00 0  

c u 
a0 

r-- 
1 1 1 1 1 ill; ll 

N cn 

(>0 gLionolanoo—ory 

47 



IT 0  

c,4 

 

It 

  

  

co 
1 1 1 1 illll c  1 1 1 1 1 1 1 1 

0- 

p oq la LI op—oi nv 

48 



The coefficients of ARIMA(2,1,0) model were estimated using 

the maximum likelyhood criterion. The estimated coefficients were: 

0
i
= -0.588 and 0

2
= -0.15 

This model satisfy the stationaritY requirements: 

1 to 

10 -.114 

11 0.062 

12 0.076 

13 0.101 

14 0.084 

15 0.336 

16 -.002 

17 -.082 

18 0.101 

19 -.140 

20 -.142 

21 -.038 

22 -.146 

1021 < 1  

102+  Oi l < 1  

102-  < 1  
For D/S section acf and pacf were calculated for lag 

27 and plotted in figs 15 and 16. The estmated acf drops off 

qu..ckly to zero which shows that the mean of the series is 

stationary and hence there is no need of differencing. Further, 

both acf and pacf coefficients are significant up to lag 2 and 

then oscillates with in the confidence band suggesting AR 

models to explain the D/S DO data. 
AR(1) and AR(2) models were tried and the residual acf are 

shown in figs. 17 and 18. The estimated AR(1) coefficient 
0 (equal 

to 0.25) is significantly different from zero and satisfy the 

stationaritY condition. However, the residual acf is not good at 

all : the absolute t-value at lag 2 is 3.39 which is far larger 

than the residual acf short lag warning level of 1.25. This 

indicate that AR(1) model fail to give independent residuals and 

hence it is not an adequate model to explain the D/S data. 

Fig. 18 and table 5 show that AR(2) model is satisfactory. 

All estmated coefficients (0i
= 0.167 and 02

= 0.334) are 

-1.00 

0.546 

0.665 

0.873 

0.728 

2.881 

-.019 

-.658 

0.804 

-1.107 

-1.112 

-.292 

-1.124 
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statiscally significant and they meet the stationarity conditions. 

Diagonostic checking using the residual acf indicates that AR(2) 

is an adequate model:as none of the residual auto-correlations in 

table 5 and fig. 18 has an absolute t-value larger than our 

practical warning value(I.25). Furthermore, according to the 

chi-square test the residual auto-correlations are not 

significantly different from zero as a set. The estimated 

chi-squared statistics (equal to 22) is not significant. For 25 

degree of freedom this statistic would have to exceed 34 to 

indicate 

level. 

Table 

statistical dependence in the random shocks at 

5: Residual acf of ARIMA(2,0,0) for D/S section 

the 10 % 

lag acf T -value 

1 0.014 0.084 

2 -.023 -.232 

3 -.050 -.519 

4 0.061 0.631 

5 0.022 0.222 

6 0.014 0.148 

7 0.078 0.793 

8 0.034 0.348 

9 0.001 0.008 

10 0.116 1.180 

11 0.080 0.797 

12 -.066 -.660 

13 -.029 0.292 

14 -.005 -.053 

15 -.093 -.917 

16 -.003 -.034 

17 0.167 1.640 

18 0.195 1.870 

19 0.057 0.528 

20 -.149 -1.36 

21 0.064 0.528 

22 -.074 -.672 

23 0.032 0.291 

24 0.012 0.111 
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25 

26 

27 

0.168 

-.022 

-.164 

   

4.4 Independent Residual Component: 

The dependent stochastic part represneted by ARMA (p,q) model 

was substracted from the series. The remaining series containing 

independent stochastic part is called as the residual series which 

can only be described by some probability distribution function. 

In Box-Jenkins ARIMA modelling it is assumed that the independent 

residue component is normally distributed. Therefore, if the 

AR/MA modelling is correct the residual part must follow a normal 

distribution otherwise one should think to improve the ARIMA model 

so that the residual part may follow a normal distribution. 

For U/S section the independent residue component has the 

following parameters: 

Mean = 0.02 

Stand. Dev. = 1.82 

Skewness = 0.645 

t-statistic = -1.98 

For normality t-test was carried out, and the t-statistic is 

calculated by the following formula: 

calculated value - hypothised value 
t-statistic - 

standard error of estimate 
where,estimated standard error is given by: 

6N(N -1)  Se(g)= 
iN-2)(N+1) (N+3) 

Using this equation, Se(g) for U/S = 0.2335 and t-value calculated 

using the equ.(53) is found to be -1.98 while critical/ t-value is 

1.98 for 95 % confidence limit with two tailed test. Since 

calculated t-val is not smaller than critical t-value, we can't 

accept the hypothesis at 5%, level of significance, and hence the 

independent residue component can not be assumed normally 

distributed. As, already stated that the ARIMA model at the U/S 

section needs further improvment. However, as the calculated 

t-value for the sample is just equal to the critical t-value, one 

(53) 
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may roughly asume that the residue component is normally 

distributed. The independent residue can be generated using the 

following normal distribution equationevaluated by least square 

fitting: 

in which, 

a(c) = 0.0189 + 1.809 z 
t 

at 
(54) 

a -a 
z = reduced variate a t a

a 

a (c) = independent residue 

The coeff of co-relation is 0.997. The fitted normal distribution 

and the independent residual is shown in fig.19. 

For D/s section the independent residual part has the 

following statistics 

Mean = 0.02 

Stand. Dev. = 1.58 

Skewness = 0.058 

t-statistic = 0.248 

Because the calculated t-val is less than the critical 

t-value, the null hypothesis is accepted. The independent residue 

component can be generated using the following normal 

distribution: 

a(c) = 0.0182 + 1.5895 z 
t 

at 
where, 

z
at 

reduced variate 

at
(c) = independent residue 

The coeff. of co-relation is 0.999. The fitted normal distribution 

and independent residue is shown in fig. 20. 
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S .0 Results and discussion 

In this study, an attempt has been made to analyze mean 

monthly dissolved oxygen concentrations observed at the U/S and 

U/S sections of the Yamuna river in Delhi. The results of the 

analysis are given below: 

5.1 Deterministic component: 

Trend component: 

There was no indication of existance of trend in the 

annual data of dissolved oxygen concentrations at both the U/S and 

U/S sections. However, gle monthly data at U/S section indicated 

the existance of trend. This may be due to the highly periodic 

nature of U/S DO data which was supposed to be removed in the 

analysis of annual data. 

5.1.2 Periodicity: 

The periodicity was detected in both the series at U/S 

and U/S sections with the help of auto-correlogram and spectral 

density function. At U/S section only first two harmonics were 

found significant while at D/S.section all the six harmonics were 

found significant. This may be due to the reflection of seasonal 

charater of both the withdrawl of river water and waste disposal 

in between the U/S and U/S sections. 

5.2 Stochastic component: 

The stochastic component is comprised of dependent stochastic 

component and independent residue component. The results of both 

the component is summarised below. 

5.2.1 Dependent stochastic component 

The sesults of the chosen ARIMA models are given in the 

following table. 

Table-6: Chosen ARIMA models and their parameters 

station ARIMA 

model 

Parameters 

of model 

Model 

U/S ARIMA(2,1,0) O= 
i 

 -0.588 w=-.558w -.147w 
I 1.--1. L - r 

+a 
L 

0
2
= -0.147,C=0.0 

i  
w= V z=(1-8)

i  z 
t. t. 
 

I 
U/S ARIMA(2 0,0) 0.167 =.167z +.3342 + a O

i
= 

_ t.-1 1.-2 L 
0
7
= 0.331,C=0.0 

The AR1MA(2,1,0) model needs further improvements as it fail 
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to give residual auto-correlations that were significantly 

different from zeril as a set (chi-square test). However, higher 

order- model does not seem to be appropriate in the case of 

dissolved oxygen concentration as it depends on previous days but 

not on the previous 3 or 4 months. Further, there may be some 

another causes which influence the DO concentration at U/S 

section. For D/S section ARIMA(2,0,0) is an adequate model as it 

give residual auto-correlations that are not significantly 

different from zero as a set. 

5.2.2 Independent residue component: 

Independent residue component was represented by normal 

distributions as given in the following table: 

Table-7: Charecteristics of residual series and parameters of 

chosen distributions 

Characteristics of residual series 

obtained after ARIMA model 

Parameter of fitted normal 

distribution at(c)=a +0 
z
at 

obs. 

st. mean 

skewness std. 

dev. 

a 0 corr 

coeff 

std.error 

of reg. 

equ. 

coeff t-val 

U/S 0.02 -.4645 -1.98 1.82 .0139 1.809 0.997 0.30 

D/S 0.02 0.0580 0.248 1.58 .0182 1.589 0.999 0.14 

The residual series obtained after ARIMA model for U/S 

section are skewed towards right(skewness=-.4645) and calculated 

t-value is just equal to the critical t-value which indicate that 

the residuals have some what dependency which should be removed by 

further improving the PRIMA model. For D/S section, the residuals 

follow a normal distribution having more or less zero skewness 

(0.058) and insignificant t-value. 
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6.0 Conclusions 

The following conclusions can be drawn from the work: 

The D/S data series were adequately described by low-order 

ARMA models (p,q 2). But for the U/S data, the residual series 

showed some dependence even after fitting ARIMA (2,1,0) model. A 

higher order model, ARIMA (p,q >2), should therefore be used for 

this data series. The dependence of the residual series for low 

order ARIMA model for this series may imply that there are still 

some deterministic elements remaining in the series even after 

removing trend and periodicity by the methods described. 

The two annual data sereis for U/S and DIG sections did not 

show any trend, which could be due to the reason of availability 

of small size of data 

(only 9 years), otherwise the increase in the effluent discharges 

from industrial, agricultural, and domestic sectors that have 

rapidly expanded in the recent past could have been reflected by 

showing the trend component. The seasonal variations in water 

quality is greatly influenced by the annual weather cycle and the 

cyclic pattern of the hydrological inputs of the river water 

environment. Uncertainties that are of a random nature, e.g 

measurement errors, unexpected high levels of effluent discharges 

near the sampling site, and variation of the sampling point within 

the river cross-section, are reflected in the residue series. 

The D/S series showed strong periodicity in comparison of U/S 

data series. This periodicity could be induced due to the 

periodic nature of raw water withdrawl and disposal of effluent 

discharges from various sources e.g. industrial, agricultural, and 

domestic sources etc. 

The Box-Jenkins method for time series analysis was 

successful in modelling the monthly water quality data in the 

Yamuna river near Delhi. The models were parsimonious and 

physically reasonable. Dissolved oxygen data for U/S required a 

first difference-moving average model, while DO data for D/S 

section required moving average model without any difference. 

The coefficients of selected ARIMA models were estimated by 

method of maximum likelyhood. However, for precise estimation of 

model coefficients one should use grid search technique c - 
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Marquardt's compromise scheme. 

6. Thin Rox-Jnnkins technique was able to employ defective data, 

containing an oscillation believed to be machine-induced, to 

obtain a workable model. This method provides the water quality 

analyst with a new technique which may succeed where other methods 

would not. It can also serve as an alternative, and perhaps 

superior approach in situations where other methods can be 

employed. 
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APPENDIX - II 

NOTATIONS: 

x observation at time t 

number of observations 

auto-correlation coeff. at lag k 
G(f) spectral density function 

frequency 

TI maximum lag considered in the auto-correlogram 

computed periodic component of series 

population mean 

total number of harmonic considered 
A and B. Fourier coeff.for ith 

harmonic I. 

Time series after removal of Trend and periodic 

components 

°kk partial auto-correlation coeff. at lag k 
Pk hypothesized value of r 

S(r
k
) estimated standard error for acf 

s(O
kk
) estimated standard error for pacf 

Os, ckz AR(2) coefficients 

0 , 8 MA(2) coefficients z 
a
t, random shock at time t 

r(a) residual acf 

S(r (a)) standard error of residual acf 
0 chi-squared test statistics 

maximum likelihood function 
Se(g) estimated std error for normality test 
a (c) calculated independent residue at time 
za reduced variate for random shock a

t 
acf auto-correlation function 
pacf partial auto-correlation function 
AR Auto-Regressive 

MA Moving Average 

ARMA Auto Regressive Moving Average 
ARTMA Auto regressive Intigrated Moving Avewrage 
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