TR-133

# SOME HYDROLOGICAL ASPECTS OF BRAHMAPUTRA RIVER

NORTH-EASTERN REGIONAL CENTRE NATIONAL INSTITUTE OF HYDROLOGY JAL VIGYAN BHAWAN ROORKEE-247667 (U.P.)

INDIA

Year 1991-92

#### PREFACE

The Brahmaputra river in north-eastern states of India is characterised by high seasonal variability in flow, sediment transport and channel configuration. Information of some hydrological aspects of river Brahmaputra is important for hydrologist and field Engineers involved in the various hydrological studies dealing with the flood problem of Assam.

The Brahmaputra is one of the most sediment charged large rivers of the world. Among the largest rivers of the world, it is second only to the yellow river in China in the amount of sediment transported per unit of drainage area. Sedimentation is also an important factor for producing flood in the Brahmaputra valley.

The report on 'some hydrological aspects of Brahmaputra river' provides some informations about flood producing storms & rainfall, river stage, river discharge and sediment discharge of the Brahmaputra.

The scientific teams of north-eastern regional centre of NIH in Guwahati undertook visits to central and state Govt. offices for collecting the required data, maps etc.

The report has been prepared by Shri Sudhir Kumar, Sc.B and Shri Umesh Kumar Singh, RA under guidance of Dr.K.K.S. Bhatia, Sc.'F'.

)

#### (SATISH CHANDRA)

CONTENTS

|       | TITLE                                                                                                       | PAGE NO. |
|-------|-------------------------------------------------------------------------------------------------------------|----------|
|       | LIST OF FIGURES                                                                                             | i        |
|       | LIST OF TABLES                                                                                              | ii       |
|       | ABSTRACT                                                                                                    | iv       |
| 1.0   | INTRODUCTION                                                                                                | 1        |
| 1.1   | Physiography of Brahmaputra valley                                                                          | 1        |
| 1.1.1 | Geology of the eastern-Himalayas and the<br>Brahmaputra basin                                               | 1        |
| 1.1.2 | Course and morphology of the Brahmaputra river                                                              | 4        |
| 1.2   | Climate, vegitation and soil of the Brahmaputra basin                                                       | 8        |
| 2.0   | FLOOD PRODUCTING STORMS AND RAINFALL IN<br>BRAHMAPUTRA VALLEY                                               | 10       |
| 2.1   | Meteorological situations associated with major<br>floods in the Brahmaputra catchment in Assam             | 10       |
| 2.2   | Normal annual & seasonal rainfall in Brahmaputra<br>catchment in Assam                                      | 11       |
| 2.3   | Seasonal rainfall in the catchments of Dihang,<br>Dibang and Lohit rivers for the years 1958 and 1959       | 12       |
| 2.4   | Average rainfall for monsoon and non-monsoon periods<br>in different raingauge stations of Dihang catchment | 13       |
| 3.0   | RIVER STAGE OBSERVATIONS AT VARIOUS GAUGING SITES<br>OF RIVER BRAHMAPUTRA                                   | 14       |
| 3.1   | Flood lift                                                                                                  | 14       |
| 3.2   | Variation of high and low water levels                                                                      | 16       |
| 3.3   | Number of occurances and duration of floods above danger level                                              | 19       |
| 3.4   | Time lag of flood peaks                                                                                     | 19       |

|     | TITLE                                                                       | PAGE NO. |
|-----|-----------------------------------------------------------------------------|----------|
| 4.0 | DISCHARGE OBSERVATIONS AT VARIOUS GAUGING<br>SITES OF RIVER BRAHMAPUTRA     | 24       |
| 4.1 | Discharge observations at various sites in<br>Tibet (China)                 | 25       |
| 4.2 | Discharge observations at various sites in<br>India                         | 26       |
| 4.3 | Discharge observations at various sites in<br>Bangladesh                    | 31       |
| 5.0 | SEDIMENT DISCHARGE OBSERVATIONS AT VARIOUS<br>SITES OF RIVER BRAHMAPUTRA    | 33       |
| 5.1 | Sediment discharge observations at the sites<br>Pasighat and Pandu in India | 33       |
| 5.2 | Sediment discharge observations in Bangladesh                               | 38       |
|     | REFERENCES                                                                  | 40       |

# LIST OF FIGURES

\$2.5

| Fig. 1 | Brahmaputra river system, Assam, India                                                                                  | 2  |
|--------|-------------------------------------------------------------------------------------------------------------------------|----|
| Fig. 2 | Geology of the eastern Himalayas and the<br>Brahmaputra basin                                                           | 3  |
| Fig. 3 | Longitudinal bank profile of the Brahmaputra<br>river                                                                   | 6  |
| Fig. 4 | Braiding in the Brahmaputra river, Assam                                                                                | 7  |
| Fig. 5 | Isohyetal map of Brahmaputra valley and adjoining highlands                                                             | 9  |
| Fig. 6 | Discharge hydrographs of the Brahmaputra<br>river at Ranaghat, Pandu and Jogighopa for 1976                             | 27 |
| Fig. 7 | Daily flow in the Brahmaputra river at Pandu<br>during rainy season (May to October 1960)                               | 29 |
| Fig. 8 | Mean monthly flow in Brahmaputra river at<br>Pandu (1971-79)                                                            | 30 |
| Fig. 9 | Daily sediment discharge in Brahmaputra<br>river at Pandu during the rainy season (May to<br>October 196 <sup>0</sup> ) | 36 |
| Fig.10 | Mean monthly sediment discharge in Brahmaputra<br>river at Pandu (1971-1979)                                            | 37 |

i

LIST OF TABLES

| Table No. |                                                                                                            |     | Page No         |
|-----------|------------------------------------------------------------------------------------------------------------|-----|-----------------|
| 1.        | Normal annual/seasonal rainfall in Brahmaputra<br>catchment in Assam                                       |     | 11              |
| 2         | Seasonal rainfall in the catchments of Dihang,<br>Dibang and Lohit rivers for the years<br>1958 & 1959     |     | 12              |
| 3         | Average rainfall (monsoon & non-monsoon periods)<br>in different raingauge stations of Dihang<br>catchment | ٤.  | 13              |
| 4         | River stage observation sites with period of record                                                        |     | 14              |
| 5         | Maximum and average flood lift of river Brahmnaputra<br>at various gauging sites for different periods     |     | 15              |
| 6         | Average rate of increase per year in H.F.L. & L.W.L.<br>at different places during different span of years |     | 17              |
| 7         | Average rate of change of H.W.L. & L.W.L. per year<br>at different places in between 1967 to 1975          | * 5 | 18              |
| 8         | Number of occurances and duration of floods above<br>danger level for selected years, Dibrugarh gague site |     | 20              |
| 9         | Number of occurances and duration of floods above<br>danger level for selected years, Guwahati gauge site  |     | 21              |
| 10        | Number of occurances and duration of floods above<br>danger level for selected years, goalpara gauge site  |     | 22              |
| 11        | Number of occurances and duration of floods above<br>danger level for selected years, Dhubri gauge site    |     | 23              |
| 12        | Discharge measurement sites with period                                                                    |     | 24              |
| 13        | Monthly mean and maximum instantaneous discharges at the site Sigatse (Tibet)                              |     | 25 <sup>.</sup> |

ii

## Table No.

| 14  | Monthly mean and maximum instantaneous<br>discharges at the site Chuehul D'zong (Tibet)        | 25 |
|-----|------------------------------------------------------------------------------------------------|----|
| 15  | Monthly mean and maximum instantaneous discharges<br>at the site Tsela D'zong                  | 26 |
| 16  | Maximum and minimum instantaneous discharges at<br>various sites in India                      | 28 |
| 17  | Maximum and minimum instantaneous discharges<br>at various sites in Bangladesh                 | 31 |
| 18  | Monthly suspended sediment yield at Pasighat<br>for the year 1958                              | 34 |
| .19 | Monthly discharge and silt load at Pandu for the year 1955 and 1956                            | 35 |
| 20  | Particulars of the surface sediment load at<br>Pandu for the years 1965, 1967, 1972 &<br>1973. | 38 |

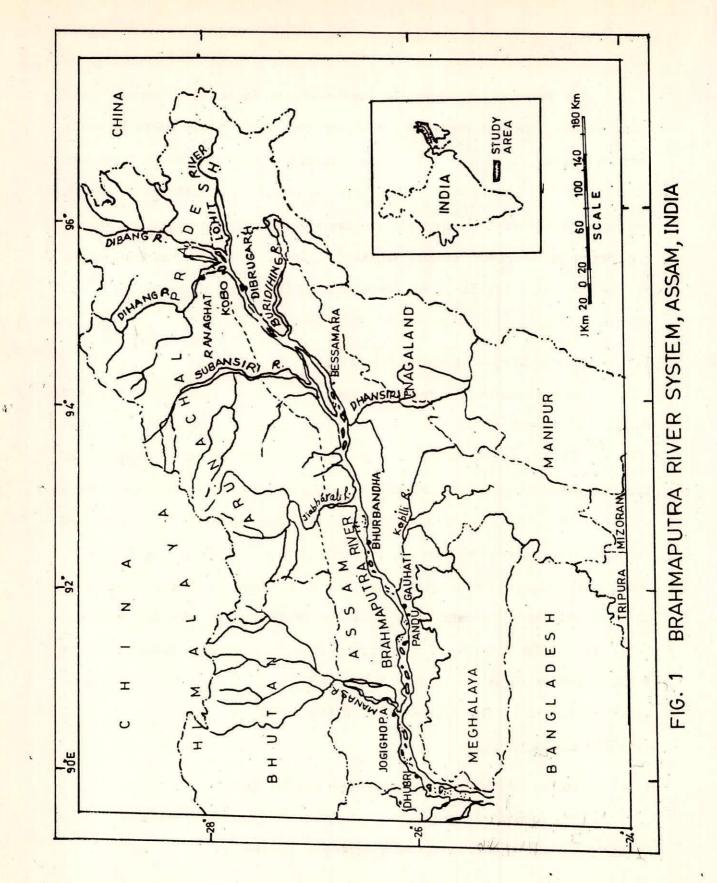
### ABSTRACT

The Brahmaputra river in north-eastern states of India is characterised by high seasonal variability in flow, sediment transport and channel configuration. Information of such hydrological aspects of river Brahmaputra is of much interest for hydrologist and field engineers involved in the various hydrological studies dealing with the flood problem of Assam.

In this technical note some hydrological aspects of the river Brahmaputra, like flood producing storms & rainfall, river stage, river discharge and sediment discharge have been reviewed with the analysed data obtained from various sources.

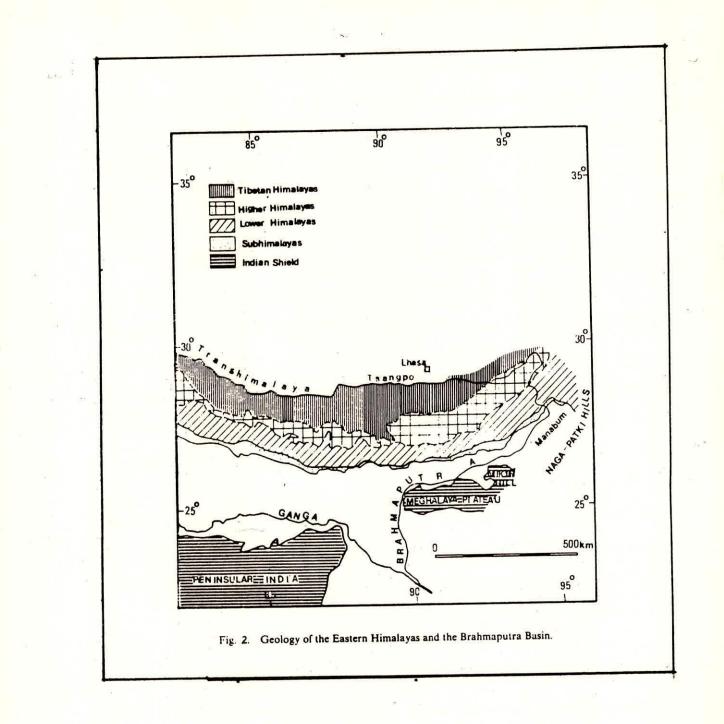
#### 1.0 INTRODUCTION

The Brahmaputra river in north-eastern India is a severe flood prone river. The catchment of the river covers the major parts of north eastern states of India. The river produces major floods in Assam and the river is characterised by high seasonal variability in flow, sediment transport and channel configuration. This report focuses on the Brahmaputra river system in Assam, India with limited references to the adjoining highlands of conterminous India and those of China and Ehutan.


#### 1.1 Physiography of Brahmaputra Valley

The catchment of the Brahmaputra occupies an area of 580,000 sq.km. The break up of the catchment area is as 293000 sq.km. in Tibet (China), 240000 sq.km. in India & Bhutan and 47000 sq.km. in Bangladesh. The Brahamputra valley in Assam is surrounded by an almost continuous chain of high hills and plateaus on the north, east, and south and represents a tectno-sedimentary province 720 km. long and 80-90 km. wide, with elevations ranging from 120 m at Kobo in the extreme east through 50.5 m at Guwahati to 28.45 m at Dhubri in the extreme west (Fig. 1). The channel of the river itself, with an average width of 8 km, occupies about one tenth of the valley. With over 40% of its area under cultivation, the Brahmaputra valley in Assam is the home of more than 15 million people.

1.1.1 Geology of the eastern Himalayas and the Brahmaputra basin


The Himalayan watershed of the Brahmaputra comprises four topographic units that rise progressively to the morth (Fig. 2).

X



2

-3

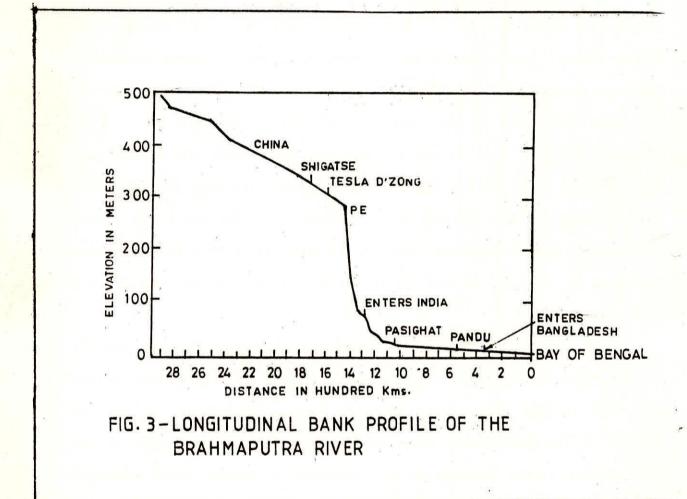


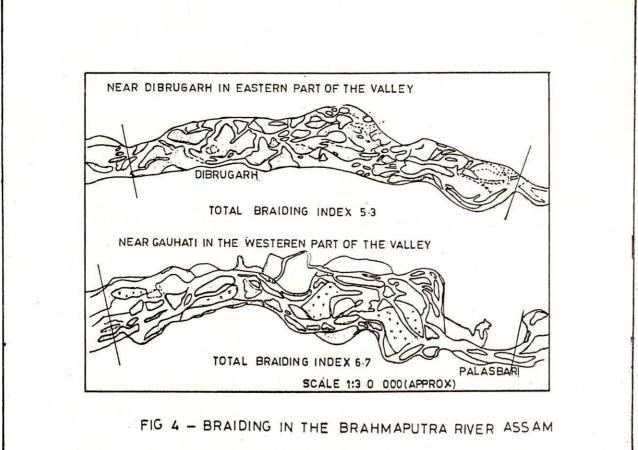
The lowermost ranges called sub-Himalayas (average elevation 1000 m) consist mainly of tertiary sand-stones and are conspicuous by the presence of many raised relatively young terraces (Ref.No.6). The middle Himalayas (average elevation 4000 m) are underlain by lower Gondwana (Palaeozoic) deposits comprising shales, slates, and phyllites overlain by a thick horizon of basaltic rocks. The Greater Himalayas (average elevation 6000 m) consist primarily of granites and gneisses. Further to the north the Trans-Himalayas of Tibet (average elevation 4500 m) are made up of sedimentary formations of palaeozoic to Eocene age (Ref.No.13).

The Patkai-naga ranges bordering the Brahmaputra valley on the east and south east (average elevation 1000 m) consist of tertiary formations criss crossed by a large number of active faults. The highland to the south of the valley, comprising the Meghalaya plateau and Mikir hills (elevation 600-1800 m) made up primarily of gneisses and schists, forms a part of the stable Indian peninsular block of precambrian age.

The Brahmaputra valley in Assam is underlain by recent alluvium approximately 200-300 m thick, consisting of clay, silt, sand, and pebbles (Ref. No.7). Its present configuration evolved during 2 million years of pleistocene and recent time (Ref.Nos.9 and 11).

1.1.2 Course and morphology of the Brahmaputra river


The Brahamputra river originates in a great glacier mass in the Kailas range of the Himalayas south of lake Gunkyud in south-west Tibet (elevation 5300 m) and flows through China, India, and Bangladesh for a total distance\_of 2880 km before ending into the Bay of Bengal through a joint channel with the Ganga. In Tibet, where it is called Tsangpo,


the Brahamputra flows eastward for 1100 km along the bottom of a longitudinal graben parallel to and about 160 km north of the Himalayas (Fig. 3). At the extreme eastern end of its course in Tibet, the Tsangpo suddently enters a deep narrow gorge at P (3500 m) which skirts around the Namcha Borwa peak (7755 m) and continuous southward across the Himalayan ranges. The gradient of the river in the gorge section ranges from about 4.3 to 16.8 m/km. On entering India, the Tsangpo, now called Dihang, traverses 226 km of mountainous course before debouching onto the Assam plain near Pasighat (elevation 155 m). At the exit of the gorge the slope of the river is only 0.27 m/km. Near Kobo, 52 km south of Pasighat, two rivers (Dibang and Lohit) meet the Dibang, and the combined flow, called the Brahmaputra moves westward through Assam for 720 km until near Dhurbi, where it swerves to the south and enters Bangladesh. The Brahmaputra has a gradient of 0.09-0.17 m/km near Dibrugarh at the head of the valley and is further reduced to about 0.1 m/km near Guwahati.

In Assam the Brahmaputra flows in a highly braided channel characterised by the presence of numerous lateral as well as mid-channel bars and islands (Fig. 4). Braiding indices (Ref.No.5) of the two reaches of the Brahmaputra shown in Fig.4 are 5.3 and 6.7 most of the channel bars in the Brahmaputra are transient in nature, being submerged during summer high flows and changing drastically their geometry and location.

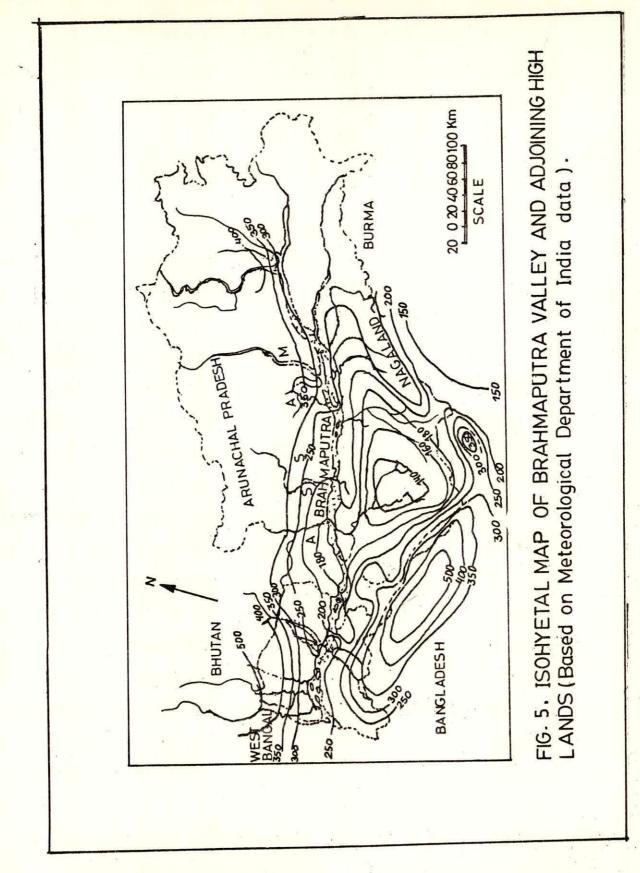
The river Brahmaputra is divided in three parts as upper reach (from its origin to Indo-China boarder), middle reach (from Indo-china boarder to Indo-Bangla boarder) and lower reach (from Indo-Bangla boarder to its outfall in Bay of Bengal).

10





7


W 500

1.2 Climate, Vegetation, and Soil of the Brahmaputra Basin

The catchment of the Brahmaputra, excluding the Tibetan portion, forms an integral part of the monsoonal regime of south-east Asia. Rainfall averages 230 cm annually, with a variability of 15-20%. There is a marked spatial variation in the distribution of precipitation over the catchment (Fig. 5). The Himalayan sector receives 500 cm of rainfall per year, the lower ranges receiving more than the higher areas. Monsoonal rains from June to September account for 60-70% of the annual rainfall. The annual average humidity in the plain area of the Brahmaputra valley is 72% ranging from monthly average of 70% in the month of March and 85% in the month of August.

Natural vegetation in the Brahmaputra basin varies with altitude from tropical evergreen and mixed deciduous forests within the valley and foothills, to alpine meadows and steppes in the higher ranges and, in Tibet, about 20% of the Brahmaputra valley is forested.

Soils in the sub-Himalayan region developed on the tertiary sandstones are shallow and consist primarily of sands with admixtures of cobbles and boulders. Alluvial soils, formed on recent river deposits, occur in the Brahmaputra valley. A few isolated pockets of deeply weathered older alluvium occur in upland areas within the valley and in the piedmont region. Borings in the quaternary sediments of the Brahmaputra valley extending down to more than 100 m (Ref.No.8) show repeated sequences of clay, fine sand, coarse sand, coarse sand with cobbles, pebbles, and boulders.



FLOOD PRODUCING STORMS AND RAINFALL IN BRAHMAPUTRA VALLEY

Major floods over the regions of Brahmaputra valley are seen when the major rainfall in the valley takes place during the monsoon season.

2.1

2.0

Meteorological situations associated with major floods in the Brahmaputra Catchment in Assam

A study of the meteorological situations associated with major floods in Assam for the period of 1956 to 1963 has been made by experts of IMD (Ref.No.4). Altogether 22 major flood situations have been studies, out of which 10 were due to break monsoon, 6 due to low pressure area, depressions etc. in Bay of Bengal, 3 due to land depressions and 3 due to upper air cyclonic circulations. Break monsoon situations are typical of this regions resulting in exceptionally heavy rainfall. The situation normally occurs when the axis of the seasonal monsoon trough shifts northwards from its normal position and lies close to the foot of the Himalayas with the setting in this situation the easterlies which had a full survey over north India to the north of the axis of the seasonal trough get replaced by the westerlies. This results in marked decrease of the rainfall in the central and northern parts of the country and increase in rainfall activity along the foot hills and sub-mountainous region of the Himalayas. If during a Break period a westerly wave also happens to pass east-wards across Nepal-Assam Himalayas, the Assam hills and plains receive exceptionally heavy rainfall. The study showed that it is mainly during August that floods are caused by the break monsoon conditions. Floods due to moonsoon depressions from the Bay generally occur in the month of June. Floods in September are rather rare and major floods mostly occured in the month of August. Unlike other parts of the country rainfall

associated with the monsoon depressions, the month of June itself is sufficieent to cause major floods in this region. This is due to fact that during the premonsoon months of April and May this part receives a fairly good amount of rainfall on account of large scale thunder storms. The saturated ground conditions and bankful river stages help in producing major floods during June.

2.2

Normal annual and seasonal rainfall in Brahmaputra Catchment in Assam

A chart of normal annual and seasonal rainfall in Brahmaputra catchment in Assam, obtained from ref.no.3 is shown in table 1.

Table 1

Normal annual/seasonal rainfall in Brahmaputra Catchment in Assam

|                       | Normal rainfall in cm |        |             |  |
|-----------------------|-----------------------|--------|-------------|--|
|                       | Period (1901-1950)    | Period | (1951-1960) |  |
| Annual                | 274.2                 |        | 264.3       |  |
| Seasonal (JUne-Sept.) | 179.3                 |        | 152.8       |  |
| June                  | 62.8                  |        | 47.70       |  |
| July                  | 65.0                  |        | 49.4        |  |
| August                | 47.4                  |        | 40.0        |  |
| September             | 41.4                  |        | 29.0        |  |

On the comparison of normal rainfall (annual & seasonal) figures of table 1 for the period 1901-1950 and 1951-60, it is found that the normal (annual & seasonal) rainfall for the period 1901-1950 is more than for the period 1951-1960. From the rainfall figures of monsoon months (June, July, August, September) of both periods (1901-50 & 1951-60), it is also observed that the peak value of monthly rainfall in monsoon season is in the month of July.

Seasonal rainfall in the Catchments of Dihang, Dibang and Lohit rivers for the years 1958 & 1959

The combined flow of rivers Dihang, Dibang and Lohit forms the Brahmaputra . Actually the name of Brahmaputra in China is Tsangpo but after crossing the Indo-china boarder, the Tsangpo changes its name to Siang-Dihang in Arunachal Pradesh. It traverses the Arunachal Pradesh in a more or less southern direction for 226 km before reaching the Pasighat ending its journey in the mountains. From pasighat Dihang travels another 52 km before joining the Dibang & Lohit, two major tributaries from northeast and east respectively as can be seen from Fig.1.

Informations of seasonal rainfall for the catchments of the rivers Dihang, Dibang and Lohit are important for dealing with the flood studies of the river Brahmaputra. But the seasonal rainfall data for the catchments of Dihang, Dibang & Lohit rivers are available only for the two years 1958 and 1959 which are shown in table 2 below:

Table 2

2.3

Seasonal rainfall in the Catchments of Dihang, Dibang & Lohit rivers for the years 1958 & 1959

|                    | and the second se | 8 a 10 h                                 |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Catchments         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rainfall in cm<br>to Sept.)<br>1959      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |
| Dihang             | 210.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 142.4                                    |
| N 30               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |
| Dibang             | 173.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 117.0                                    |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |
| Lohit              | 179.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 142.0                                    |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |
| Combined Catchment | 194.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 135.4                                    |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A. A. A.                                 |

(Source: Ref. No.3)

Average rainfall for monsoon & non-monsoon periods in different, raingauge stations of Dihang Catchment

From avilable raingauge data (Ref.No.3) of the stations of Dihang catchment, the average value of rainfall (monsoon & non-monsoon periods) in the different raingauge stations of the catchment has been shown in table 3. The period of data record for each raingague station is also shown against each station in table 3.

| Table 3 | Average rainfall (monsoon & non-monsoon periods) in different |  |
|---------|---------------------------------------------------------------|--|
|         | raingauge stations of Dihang Catchment                        |  |

| Monsoon/               |                     | Av               | erage Raint        | fall in cm           | 1/                   | 19                  |                 |
|------------------------|---------------------|------------------|--------------------|----------------------|----------------------|---------------------|-----------------|
| Non-monsoon            | Pasighat<br>1953-70 | Along<br>1960-70 | Kambang<br>1966-70 | Boleng In<br>1969-70 | kiyong Me<br>1968-70 | dhuka Tu<br>1966-70 | ting<br>1966-70 |
| Monsoon<br>(May-Sept.) | 421                 | 166              | 283                | 223                  | 156                  | . 169               | 275             |
| Non-monsoon            | 86                  | 59               | 74                 | 66                   | 98                   | 69                  | 122             |
| Total:                 | 507                 | 225              | 357                | 289                  | 254                  | 238                 | • 397           |

(Source: Ref. No.3)

The statement of table 2 shows that the rainfall is heavy at pasighat but to the north of pasighat it reduces as could be seen from average rainfall figures of Along, Boleng and Inkiyong. The rainfall figure of Tuting shows higher, near the international boarder where Dihang enters India, when compared to the stations situated in the middle of the catchment. Medhuka of the north western boarder of the Dihang basin shows low rainfall when compared to pasighat.

13

2.4

## 3.0 RIVER STAGE OBSERVATIONS AT VARIOUS GAUGING SITES OF RIVER BRAHMAPUTRA

River stages of river Brahmaputra have been observed since 1907-8 at the following sites for the duration noted against each as shown in table no. 4.

Table - 4 River stage observation sites with period of record

| Sl.No. | Gauge site   | River chainage from<br>Bangladesh Boarder (Km) | 20    | Period  | of  | rec  | cord    |
|--------|--------------|------------------------------------------------|-------|---------|-----|------|---------|
| 1      | Dibrugarh    | 580                                            | 1907  | to 1917 | & 1 | 933  | onwards |
| 2      | Silghat      | 352                                            | 1908  | to 1916 | & 1 | 1955 | onwards |
| 3      | Tezpur       | 335                                            | 1907  | onwards |     |      |         |
| 4      | Guwahati     | 205                                            | 1908  | onwards |     |      |         |
| 5      | Goalpara     | 95                                             | 1908  | onwards |     |      | :       |
| 6      | Dhubri       | 20                                             | 1907  | onwards |     |      |         |
| 7      | Morkongselek | 627                                            | 1955  | onwards |     |      |         |
| 8      | Neamatighat  | 465                                            | 1955  | onwards |     |      |         |
| 9      | Pandu        | 198                                            | 1955  | onwards |     |      |         |
| 10     | Jogighopa    | 85                                             | Sept. | 1955 a  | nwa | rds  |         |
| 11     | Bessamara    | 495                                            | June  | 1955 on | war | ds   |         |

<sup>(</sup>Source: Ref. No.3)

Where Morkongselek, Dibrugarh, Neamatighat, Silghat, Tezpur, Guwahati Pandu, Goalpara, Joghigopa and Dhubri are now permanently the sites for river stage observations.

3.1 Flood Lift

Maximum and average flood lift for the sites Dibrugarh, Neamatighat, Silghat, Tezpur, Guwahati, Pandu, Goalpar a and Dhubri are shown in table 5.

| Site          | Maxm. F.L.in meter | Average F.L.in meter | Period  |
|---------------|--------------------|----------------------|---------|
| Dibrugarh     | 6.523              | 5.681                | 1909-17 |
| 0             | 6.980              | 5.898                | 1933-47 |
|               | 4.668              | 4.651                | 1948-50 |
|               | 4.755              | 3.655                | 1951-75 |
| Neamatighat   | 6.323              | 5.432                | 1955-75 |
| Silghat       | 11.552             | 9.290                | 1908-16 |
| -             | 9.040              | 7.617                | 1955-75 |
| Tezpur        | 9.114              | 8.464                | 1907-16 |
| 2 <b>4</b> 77 | 8.772              | 8.214                | 1930-34 |
|               | 8.687              | 7.721                | 1939-54 |
|               | 7.157              | 5.758                | 1955-75 |
| Guwahati      | 9.784              | 9.330                | 1908-18 |
|               | 10.089             | 9.610                | 1920-32 |
|               | 10.851             | 10.058               | 1933-42 |
|               | 10.394             | 9.906                | 1943-50 |
|               | 10.973             | 9.266                | 1951-62 |
|               | 10.333             | 9.552                | 1964-73 |
| Pandu         | 9.178              | 8.008                | 1955-75 |
| Goalpara      | 10.052             | 9.062                | 1908-22 |
|               | 8.169              | 7.849                | 1923-42 |
| ж.            | 9.327              | 7.961                | 1954-70 |
| Dhubri        | 9.190              | 7.724                | 1907-27 |
|               | 6.614              | 6.227                | 1933-49 |
|               | 6.462              | 5.630                | 1950-61 |
|               | 6.599              | 5.630                | 1961-75 |

Table 5- Maxm. and average flood lift of river Brahmaputra at various gauging sites for different periods

From the data of maxm. and average flood lift at various gauge site given in table 5, following conclusions can be made.

 (a) Gauge levels during the period before the 1950 earthquake, all throughout shows greater flood lift compared with those after 1950.

- (b) Flood lift at Guwahati and Goalpara sites shows little variation but for all other sites, the flood lift has reduced after 1950.
- (c) The maxm. reduction in the average flood lift is at Dibrugarh, with an approximate reduction of more than 2 m and similarly at Tezpur it is 1.95 m.
- (d) The flood lift reduction is more pronounced in the upper reaches from Dibrugarh to Tezpur than in the lower reach.
- (e) This reduction of flood lift in the upper reaches has probably resulted in the development of acute erosion problem. On both bank of the river, besides the inundation problem for which continuous embankments had to be constructed subsequently.
- (f) The average flood lift on Brahmaputra now varies between a maxm. of 9.55 m at Guwahati to a minimum of 3.65 at Dibrugarh . The average flood lift at Neamatighat, Silghat, Tezpur, Pandu, Goalpara and Dhubri is now 5.43, 7.62, 5.76, 8.07, 7.96, 5.63 metres respectively.
  - (g) The amount of flood lift at various sites when examined from upstream to downstream is not increasing in a regular manner as should have been the case. The natural features along the river restricting the section of river appears to be responsible for this irregular propagation of flood wave through the wide and narrow reaches all along the valley.
  - 3.2 Variation of high and low water levels

A study on high and low water levels of the Brahmaputra from 1910 to 1965 at different places along the banks of the Brahmaputra was made by CWPRS, Pune (as per informations available in reference no.3) and incorporated in the report of the study group on erosion by Brahmaputra. It was concluded that:- a. In every places, there is a tendency of increase of H.F.L. & L.W.L. The average rate of increase per year in H.F.L. & L.W.L. during different span of years at different places are given in table 6.

| Place     | H.F.L.(in ft.) | L.W.L.(in ft.) | Span of years |
|-----------|----------------|----------------|---------------|
| Dibrugarh | 0.1            | 0.20           | 1913 - 1964   |
| DIDIUgain |                | 0.084          | 1920 - 1948   |
| Tezpur    | 0.025          | 0.20           | 1931 - 1964   |
| Tophar    |                | 0.07           | 1931 - 1946   |
| Guwahati  | 0.077          | 0.1            | 1908 - 1965   |
|           |                | 0.082          | 1920 - 1952   |
| Dhubri    | 0.025          | 0.11           | 1931 - 1964   |
|           |                | 0.085          | 1931 - 1950   |

Table 6: Average rate of increase per year in H.F.L.& L.W.L. at different places during different span of years

b. There is some cyclic behaviour of such yearly fluctuations in H.F.L.
& L.W.L. The extent of amplitude and the length of cyclic time differs much in each cycle and no definite conclusions may be made.

c. The sudden rise of bed at Dibrugarh due to earthquake of 1950 is one of the factors which cause the rise of water levels. The rate of increase of L.W.L. is the highest at Dibrugarh. It then gradually shows low in the down stream reaches. Similarly rate of change of H.W.L. is the highest at Dibrugarh and low at Tezpur and Dhubri. The rate of Guwahati shows a bit higher than that of Tezpur possibly due to restricted section there.

d. The casue of rise of the H.W.L. and L.W.L. at Dibrugarh is due to rapid aggradation after 1950. But below Tezpur, the small aggradation may not alone be responsible for such rise. The causes may be aggradation,

change in quantities of discharges depending upon pattern of rainfall, change of river configuration and altribution from the local tributaries.

1

Data on H.W.L. & L.W.L. from the year 1967 to 1975 were also examined for places Dibrugarh, Neamati, Tezpur, Guwahati, Goalpara and Dhibri. Here also, except at Goalpara and Dhubri some cyclic behaviour in fluctuations are observed. But the amplitude is very small and ranges in between 3 ft. However the cyclic period is very long say 4 to 5 years. The Goalpara and Dhubri, the average rate of change of L.W.L. and H.W.L. in between 1967 to 1975 may be accepted as nil.

The table 7 shows the rate of such changes. The trends given by the table are very rough indirection as the duration considered is only about 8 years.

Table 7 :- Average rate of change of H.W.L.& L.W.L. per year at different places in between 1967 to 1975

| Place     | H.F.L.(in ft.) | L.W.L.(in ft. | ) Span of years                  |
|-----------|----------------|---------------|----------------------------------|
| Dibrugarh | -0.11          | +0.11         | 1967 - 1975                      |
| Neamati   | +0.15          | -0.11         | -do-                             |
| Tezpur    | +0.05          | -0.08         | 1967 - 68 & 1971-74              |
| Guwahati  | +0.10          | +0.15         | 1967-68, 70-71 &<br>1973 to 1975 |
| Goalpara  | Negligible     | Negligible    | 1967 - 1975                      |
| Dhubri    | Negligible     | Negligible    | -do                              |

From the table 7 , the Dibrugarh and the Neamati gauges show a decreasing value in H.W.L. and L.W.L. respectively. The overall position from Neamati to Guwahati shows on increasing trend. To find out the actual causes of such trend of rise, a rigorous study on rainfall, gauge, discharge and

change of river configuration of the Brahmaputra as well as all the tributaries for a pretty long period will be required. The correlation study of all these data may help in finding out actual cause of this problem.

### 3.3 Number of occurances and duration of floods above danger level

For evaluating the number of occurances and duration of high floods, the floods of 1910, 1911, 1915, 1916, 1931, 1938, 1948, 1954, 1960, 1962, 1966, 1969, 1970, and 1973 have been considered. Number of occurances and duration of floods above danger level at various stages for selected years for gauging sites Dibrugarh, Guwahati, Goalpara and Dhubri have been shown in table 8, 9, 10 and 11 respectively.

#### 3.4 Time lag of flood peaks

Time lag of flood peaks for various stations have been calculated by flood forecasting circle of the C.W.C. Time lag calculated on the basis of 1976 flood gave the following time lag between different stations.

| Dibrugarh with respect to Pasighat | = 12 hrs. |
|------------------------------------|-----------|
| Neamati with respect to Dibrugarh  | = 24 hrs. |
| Tezpur with respect to Neamati     | = 24 hrs. |
| Guwahati with respect to Tezpur    | = 24 hrs. |
| Goalpara with respect to Guwahati  | = 24 hrs. |
| Dhubri with respect to Goalpara    | = 24 hrs. |

The time lag of peaks is dependent on many factors like stage of the river, contributation of the major tributaries and that of the intermittent catchment area,valley storage available at various states of the river both on the main as well in tributary basins and the flood wave preceeding the once under consideration. The above values will, however, give a fair indication of the time lag between the main stations.

Number of occurances and duration of floods above danger level for selected years, Dibrugarh gauge site, Danger level = Table 8:

1

| Year | Stage ≥345 ft.     | 5 ft.               |                               | S    | Stage ≥ 34         | 344 ft.                     |                                | Stage ≽ 343         | 343 ft.              |                               | Stage≳              | : 342 ft.            |                                |
|------|--------------------|---------------------|-------------------------------|------|--------------------|-----------------------------|--------------------------------|---------------------|----------------------|-------------------------------|---------------------|----------------------|--------------------------------|
|      | No.of<br>occurance | Dur<br>(da<br>Total | Duration<br>(days)<br>al Max. |      | No.of<br>occurance | Durati<br>(days)<br>Total M | Duration<br>(days)<br>tal Max. | No. of<br>occurance | Dura<br>(di<br>Total | Duration<br>(days)<br>al Max. | No. of<br>occurance | -Dur<br>(da<br>Total | -Duration<br>(days)<br>al Max. |
| (1)  | (2)                | (3)                 | (4)                           | • •  | (5)                | (9)                         | (2)                            | (8)                 | (6)                  | (10)                          | (11)                | (12)                 | (13)                           |
| 1938 | X                  | Х                   | X                             | a' a | X                  | X                           | X                              | X                   | X                    | X                             | 1                   | 1                    |                                |
| 1948 | X                  | X                   | X                             |      | X                  | X                           | X                              | Х                   | X                    | X                             | 1                   | 1                    | -                              |
| 1954 | X                  | X                   | X                             |      | X                  | X                           | X                              | 1                   | 2                    | 2                             | 2                   | 3                    | 3                              |
| 1960 | X                  | X                   | X                             |      | 1                  | Ч                           | 1                              | Э                   | 4                    | 2                             | æ                   | 14                   | S                              |
| 1962 | 2                  | 2                   | 2                             |      | 2                  | 4                           | 2                              | 4                   | 10                   | 3                             | 7                   | 17                   | œ                              |
| 1966 | X                  | X                   | X                             |      | X                  | X                           | X                              | X                   | X                    | х                             | 2                   | 5                    | 3                              |
| 1969 | 1                  | 3                   | e.                            |      | 1                  | <mark>ى</mark>              | ۍ<br>۲                         | 2                   | 11                   | 9                             | 10                  | 27                   | 12                             |
| 1970 | X                  | X                   | X                             |      | 1                  | 1                           | , -                            | 5                   | œ                    | ę                             | œ                   | 22                   | 9                              |
| 1973 | X                  | X                   | X                             |      | 2                  | 2                           | 1                              | 9                   | 12                   | 3                             | 4                   | 24                   | 11                             |

Table 9: Number of occurance and duration of floods above danger level for selected years, Guwahati gauge site,

Danger level = 163 ft.

Number of occurances and duration of floods above danger level for selected years, Goalpara gauge site Table 10:

1

Danger level = 119 ft.

| Year |                    | ≥12   | Stage ≥122 ft.     | Stag               | Stage ≥ 121 ft. | ft.                | Stage ≥ 120 ft.    | 120 f      |                    | Stage                          | 1~         | Stage > 11? ft.     | Stage              | €)<br>\/\ | 118ft              |
|------|--------------------|-------|--------------------|--------------------|-----------------|--------------------|--------------------|------------|--------------------|--------------------------------|------------|---------------------|--------------------|-----------|--------------------|
|      | No.of<br>occurance | ÷ ,   | Duration<br>(days) | No.of<br>occurance | Dur<br>(d       | Duration<br>(days) | No.of<br>occurance |            | Duration<br>(days) | No.of Durati<br>occurancedays) | nceda      | Duration<br>cfdays) | No.of<br>occurance | Dul<br>Se | Duration<br>(days) |
|      |                    | Tota] | Total Max.         |                    | Total           | Total Max.         |                    | Total Max. | Max.               | F                              | Total Max. | Max.                |                    | Tota      | Total Max.         |
| 1910 | 1                  | 9     | 9                  | 1                  | 18              | 18                 | 8                  | 33         | 27                 | -                              | 48         | 48"                 | 2                  | 59        | 53                 |
| 1911 | I                  | 2     | 7                  | 2                  | 28              | 16                 | 1                  | 41         | 41                 | -                              | 47         | 47                  | ß                  | 73        | . 63               |
| 1915 | 1                  | 2     | 2                  | 2                  | 14              | 11                 | 2                  | 24         | 17                 | 2                              | 99         | 55                  | 1                  | 78        | 78                 |
| 1916 | X                  | X     | X                  | 1                  | 3               | ŝ                  | 2                  | 14         | 7                  | ŝ                              | 41         | . 16                | 2                  | 50        | 48                 |
| 1931 | X                  | X     | X                  | X                  | X               | X                  | X                  | X          | X                  | X                              | X          | X                   | 1                  | 7         | . 2                |
| 1938 | X                  | X     | X                  | X                  | X               | X                  | X                  | X          | х                  | 1                              | 6          | 6                   | 2                  | 21        | 14                 |
| 1948 |                    |       |                    | Data               | not             |                    | available          | le         |                    |                                |            |                     |                    |           |                    |
| 1954 | 1                  | 6     | 6                  | 2                  | 21              | 13                 | 4                  | 46         | 26                 | T                              | 73         | 73                  | 1                  | 78        | 78                 |
| 1960 | X                  | X     | X                  | X                  | X               | X                  | X                  | X          | X                  | г                              | 4          | 4                   | 2                  | œ         | 5                  |
| 1962 | X                  | X     | X                  | 1                  | 4               | 4                  | 1                  | 9          | 9                  | 2                              | 19         | 15                  | 2                  | 28        | 22                 |
| 1966 | X                  | X     | X                  | Х                  | X               | X                  | 1                  | 1          | 1                  | 1                              | 2          | 2                   | 2                  | œ         | S                  |
| 1970 | X                  | X     | Х                  | X                  | X               | X                  | 1                  | 2          | 2                  | н                              | 14         | 14                  | 2                  | 23        | 21                 |
| 1973 | X                  | X     | X                  | X                  | X               | X                  | X                  | X          | X                  | X                              | X          | X                   | <sup>2</sup>       | 80        | 5                  |

Dubri gauge site, Table 11: Nurber of occurances and duration oif floods above danger level for selected years,

-

7.

Danger level = 94 ft.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stage≫96 ft. Stage ≥             | Stage ≥95 ft.                                    | Stage>94 ft.            | ft.                              | Stage                    | Stage≥93 ft.                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------|-------------------------|----------------------------------|--------------------------|------------------------------------|
| 1       3       3       1       15         1       3       3       1       7         X       X       X       X       10         X       X       X       X       X         X       X       X       X       X         X       X       X       X       X         X       X       X       X       X         X       X       X       1       14         X       X       X       1       14         X       X       X       1       14         X       X       X       X       X       X         X       X       X       X       X       X       X         X       X       X       X       X       X       X         X       X       X       X       X       X       X       X         X       X       X       X       X       X       X       X         X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X                                                                         | Duration<br>(days)<br>Total Max. | No.of Duration<br>occurance (dåys)<br>Total Max. | No.of<br>occurance<br>T | Duration<br>(days)<br>Total Max. | No.of<br>occurance<br>To | Duration<br>e (days)<br>Total Max. |
| 1       3       3       1       7         X       X       X       2       10         X       X       X       X       X         X       X       X       X       X         X       X       X       X       X         X       X       X       X       X         X       X       X       1       14         X       X       X       1       14         Z       18       12       3       38         X       X       X       X       X       X         X       X       X       X       X       X       X         X       X       X       X       X       X       X         X       X       X       X       X       X       X         X       X       X       X       1       3       3         X       X       X       X       X       3       3         X       X       X       X       X       3       3       3         X       X       X       X       X       3       3 <th></th> <th>24 24</th> <th>2</th> <th>39 28</th> <th>1</th> <th>75 75</th> |                                  | 24 24                                            | 2                       | 39 28                            | 1                        | 75 75                              |
| X       X       X       Z       10         X       X       X       X       X       X         X       X       X       X       X       X         X       X       X       X       X       X         X       X       X       X       1       14         Z       18       12       3       38         X       X       X       X       X       X         X       X       X       X       X       X       X         X       X       X       X       1       38       38         X       X       X       X       X       X       X       X         X       X       X       X       X       X       X       X       X         X       X       X       X       1       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       <                                       |                                  | 17 14                                            | 1                       | 42 42                            | 1                        | 60 60                              |
| X     X     X     X     X       1     1     14       X     X     X     1       X     X     X     1     14       Z     18     12     3     38       X     X     X     X     X     X       X     X     X     X     X     X       X     X     X     X     X     X       X     X     X     X     X     X       X     X     X     X     1     3       X     X     X     X     1     3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  | 41 34                                            | 1                       | 78 78                            | <b>.</b>                 | 82 82                              |
| Mata     Data       X     X     1       X     X     1       2     18     12     3       X     X     X     X       Z     18     12     3       X     X     X     X       X     X     X     X       X     X     X     1       X     X     X     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | 10 5                                             | 2                       | 43 29                            | 2                        | 56.51                              |
| X     X     T       X     X     X     1       2     18     12     3       X     X     X     X     X       Z     4     3     2       X     X     X     1       X     X     X     1       X     X     X     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | not                              | availabl€                                        |                         |                                  |                          |                                    |
| X       X       X       1       14         2       18       12       3       38         X       X       X       X       X       X         Z       4       3       2       22         X       X       X       1       3         X       X       X       1       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | not                              | available                                        |                         |                                  |                          |                                    |
| 2     18     12     3     38       X     X     X     X     X       2     4     3     2     22       X     X     X     1     3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  | 27 19                                            | 4                       | 51 26                            | ß                        | 77 67                              |
| X     X     X     X     X       2     4     3     2     22       X     X     X     1     3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  | 72 72                                            | 1                       | 74 74                            | 3                        | 85 81                              |
| 2 4 3 2 22<br>X X X 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | 6 4                                              | 2                       | 14 7                             | ţ.                       | 46 19                              |
| X X 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | 35 24                                            | 2                       | 57 41                            | 3                        | 71 47                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | 6 5                                              | 2                       | 8                                | ŝ                        | 40 18                              |
| 1970 X X 1 1 13 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | 30 28                                            | 2                       | 38 33                            | 3                        | 48 37                              |

8

۰.

#### 4.0 DISCHARGE OBSERVATIONS AT VARIOUS GAUGING SITES OF RIVER BRAHMAPUTRA

The discharge of river Brahmaputra has been observed at the sites and the period as given in table 12.

Table 12: Discharge measurement sites with period

| River mileage from<br>Indian boarder with<br>Bangladesh in km. | Location              | Period                          |
|----------------------------------------------------------------|-----------------------|---------------------------------|
|                                                                | Shigastse (Tibet)     | 1955-61<br>(July to August)     |
| 1596                                                           | Chuchul D'zong(Tibet) | 1955-61<br>(July to Sept.)      |
| 1178                                                           | Tsela D'zong(Tibet)   | 1955-61<br>(July to Oct.)       |
| 692                                                            | Pasighat (India)      | 1949-62                         |
| 495                                                            | Besamara (India)      | 1975                            |
| 198                                                            | Pandu (India)         | 1955-76                         |
| 85                                                             | Jogighopa (India)     | 1955-57 and<br>from 1971 onward |

(Source: Ref. No.3)

The discharge observations at Pasighat and Jogighopa which were discontinued earlier have again been started since 1976 and inaddition one new site at Bessamara between Pasighat and Pandu has been opened since 1976.

Besides the above, discharge in Brahmaputra are measured in Bangladesh at Chilmari (near the Indian Boarder), Bahadurabad, Sirajganj and Nagarbari (before confluence with ganges AT Bahadurabad, the discharge observations were started in 1966 and on the other three sites from 1965 onwards. 4.1 Discharge observations at various sites in Tibet (China)

The diischarges of the sites Shigatse, Chuehul -D'zong and Tsela-D'zong are obtained from the reference no.3 for the flood period 1955 to 1961. Monthly mean for the period 1955-61 for July-Oct. alongwith maximum instantaneous discharges during the period at the sites Shigatse, Chuehul-D'zong and Tsela-D'zong are shown in tables 13, 14 and 15 respectively.

Table 13: Monthly mean and maximum instantaneous discharges at the sites Sigatse (Tibet)

|        |       |                                           | and the second s |                                                  |
|--------|-------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Period |       | Maximum monthly mean<br>and year (Cumecs) | Average montly<br>mean (Cumecs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Max. observed<br>discharge with<br>date (Cumecs) |
| July   | 55-61 | 1435, 1958                                | 1123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3380                                             |
| Aug.   | 55-61 | 2463, 1961                                | 1727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | on 18.8.61                                       |
| Sept.  | 55-61 | 1835, 1960                                | 1359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |
| Oct.   | 56-61 | 1040, 1961                                | 741                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U.                                               |

Table 14: Monthly mean and maximum instantaneous discharges at the site Chuehul D'zong (Tibet)

| Period |        | Maximum monthly mean<br>and year (Cumecs) | Average monthly<br>mean (Cumecs) | Max. observed<br>discharge with date<br><u>Cumecs</u> ) |
|--------|--------|-------------------------------------------|----------------------------------|---------------------------------------------------------|
| July   | 55-61  | 2860, 1955                                | 2141                             | 6230                                                    |
| Aug.   | 55-61  | 3912, 1961                                | 3010                             | on 29.8.60                                              |
| Sept.  | 55-61  | 3370, 1960                                | 2344                             |                                                         |
| Oct.   | 56- 61 | 1582, 1961                                | 1219                             |                                                         |

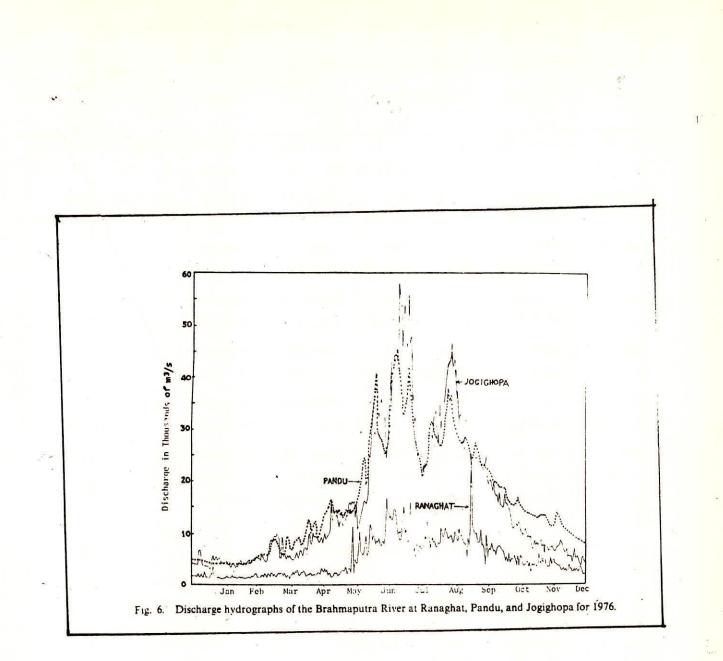
| Period             |                | Maximum monthly<br>mean & year<br>(Cumecs) | Average monthly<br>mean (Cumecs) | Maximum observed<br>discharge with<br>date (Cumecs) |
|--------------------|----------------|--------------------------------------------|----------------------------------|-----------------------------------------------------|
| July               | 55-61          | 4830,1955                                  | 3539                             |                                                     |
| August             | 55-61          | 6165,1961                                  | 5325                             | 10200 on 11/12<br>August 1959                       |
| Sept.              | 55-61          | 5177,1960                                  | 3992                             |                                                     |
| Oct.<br>(Excluding | 55-61<br>g 59) | 2669,1961                                  | 2411                             |                                                     |

Table 15: Monthly mean and maximum instantaneous discharges at the site Tsela D'zong (Tibet)

The maximum dischafge at Tsela D'zong during August 1962 is not available.

Studying the average monthly mean of the three sites, the following trends, can be observed.

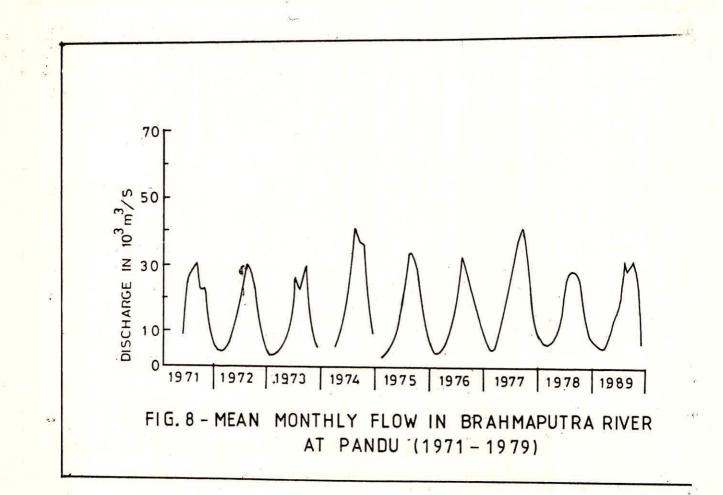
1. The average monthly mean discharge at Shigatse and chuehul D'zong for the month of May is quite low when compared to the discharge for the month of Tsela D'zong. This is probably due to discharge of river Giandachu meeting Tsangpo at Tsela D'zong.


2. The average monthly discharges, for July, Aug. and Sept. are less than double at Chuehul D'zong and more three times at Tsela D'zong of the discharge at Shigatse.

3. The maximum discharge at three sites is in August and the dominent discharge at Shigatse, Chuehul D'zong and Tsela Dzong can be taken as 1727, 3010 and 5325 cumecs respectively.

4. The maximum discharge at all the three sites has been observed in August.


4.2 Discharge observed at various sites in India


Discharge of river Brahmaputra in India are observed at the sites Pasighat, Pandu, Jogighopa and Bessamara. The maxm. and minimum instantaneous discharges with date at the various sites have been shown in table 16.



| . (Cume           |                    |                  |                                    | lu Discharge<br>Jogighapa |                     | Discharge<br>Bessamara ( |          |
|-------------------|--------------------|------------------|------------------------------------|---------------------------|---------------------|--------------------------|----------|
| Maximum           | Minimum            |                  | Minium                             | Maximum                   | Minimum             | Maximum                  | Minimum  |
| Date<br>(1)       | Date<br>(2)        | Date<br>(3)      | Date (4)                           | Date<br>(5)               | Date (6)            | Date (7)                 | Date     |
| 1354.55           | 1194.06            | 52600            | 3914                               | 40916.05                  | 4174.70             | 24781.14                 | (8)      |
| 20.8.49           | 22.10.49           | and the second   | 28.12.56                           | 23.7.56                   | 11.4.56             | 28.7.75                  | 31.12.75 |
| 4526.68           | 1082.84            | 44100            | 3200                               | 54364.30                  | 5575.10             | 17779.96                 | 1807.71  |
| 7.7.50            | 23.2.50            | V                | 14.1.56                            | 24.6.57                   | 31.1.57             | 7.7.76                   | 16.1.76  |
| 8494.84           | 1279.10            | 58500            | 3288                               | 42490.10                  | 7463.80             |                          |          |
| 9.6.51            | 29.12.51           |                  | 24.2.57                            | 27.8.71                   | 31.12.71            |                          | 25       |
| 470.62 .          | 1106.39            | 62000            | 3288                               | 64186.20                  | 3887.20             |                          |          |
| .9.52             | 27.1.52            | 29.8.58          | 2 P                                | 1.8.72                    | 29.12.72            |                          |          |
| 000.14            | 1665.57            | 41200            | 2057                               | 53843.70                  | 2969.70             |                          |          |
| 2.7.53            | 20.1.53            | 14.8.59          |                                    | 19.9.73                   | 18.2.73             |                          |          |
| 6468.99           | 1074.92            | 58600            |                                    |                           |                     |                          |          |
| 8.7.54            | 28.1.54            | 18.9.60          | 2857                               | 56906.80<br>3.9.74        | 4656.20<br>30.12.74 |                          |          |
|                   |                    |                  |                                    |                           |                     |                          |          |
| 4489.60           | 1248.82            | 51700            | 3325                               | 58034.40                  | 2165.00             |                          |          |
| 4270.64           | 30.1.55<br>1939.15 | 17.7.61<br>71900 | 2662                               | 4.8.75<br>58180.90        | 24.1.75<br>3407.90  |                          |          |
| 7.8.56            | 21.12.56           | 23.8.62          |                                    | 8.7.76                    | 6.2.76              | 2                        |          |
| 6480.79           | 1144.45            | 47610            | N.A. (1963                         |                           |                     |                          |          |
| 8.7.57            | 13.2.57            | 25.8.63          | N.R. (1705                         | /                         |                     |                          |          |
| 4070.28           | 1416.10            | 33000            | N.A. (1964                         | ,                         |                     | 5 5 5 X                  |          |
| 7.8.58            | 3.4.58             | 16.9.65          | N.A. (1704                         | ,                         |                     |                          |          |
| 3627.75           | 1679.38<br>30.1.59 | 58244<br>29.8.66 | N.A.(1965                          | ).                        |                     |                          |          |
| 9123.44<br>5.9.60 | 1078.71 9.2.60     | 45620<br>11.7.67 | 2605                               | C                         |                     | C <sub>4</sub>           |          |
| 1996.49<br>4.7.61 | 1177.37<br>21.2.61 | 36196<br>25.7.68 | 2222<br>15.1.67                    | 53286                     |                     | 2786 29.1.75             |          |
| 9630.10<br>8.8.62 | N.A.               | 40480<br>21.7.69 | 1757<br>5.2.68                     | 49479 27.6.               |                     |                          |          |
| *                 |                    | 49386<br>26.7.70 | 2343<br>27.1.69                    |                           |                     |                          | 1        |
|                   |                    | 51100            | 7.2.70<br>2763<br>31.12.72<br>2604 | 1                         |                     |                          |          |
|                   | Continue -         | 8.8.73<br>C3     | 16.1.73<br>C <sub>4</sub>          | 28                        |                     |                          |          |

Table - 16: Maximum and Minimum instantaneous discharges at various sites in India





The Brahmaputra is the fourth largest river in the world (Ref.No.5) in terms of average discharge at mouth, with a flow of 19,830  $\mathbb{R}^{n}$ /S. The rainy season (May to October) accounts for 82% of the mean annual flow at Pandu. Discharge hydrographs of the Brahmaputra river (obtained from Ref. No.5) at Ranaghat, Pandu, and Jogighopa for 1976 have been shown in Fig.6. The daily flow for the year 1960 and mean monthly flow for the years 1971-79 in Brahmaputra river during rainy season (May to October) at gauging site Pandu have been shown in Fig. nos. 7 & 8 respectively.

The hydrographs of the Brahmaputra at Ranaghat, Pandu, and Jogighopa for 1976, shown in Fig.6, show the high fluctuations in daily discharge of the river.

### 4.3. Discharge observations at various sites in Bangladesh

Discharge of river Brahmaputra in Bangladesh are observed at the sites Chilmari, Bahadurabad, Sirajganj and Nagarbari. The maximum and minimum instantaneous discharges at these sites for the years 1965, 1966 and 1967 are shown in table 17.

| Table – $17$ : | Maximum and Minimum | instantaneous | discharges | at | various    |
|----------------|---------------------|---------------|------------|----|------------|
| - 1            | sites in Bangladesh |               | •          |    |            |
|                |                     |               |            |    | (Unit:Cume |

| Years | Discharges at<br>Chilmari |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bahad              |                     |                    | rges at<br>anj    | Discharges at<br>Magarbari |                                       |
|-------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|--------------------|-------------------|----------------------------|---------------------------------------|
|       | Maxm.<br>Date             | Minimum<br>Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Max.<br>Date       | Minimum<br>Date     |                    | Minimum<br>Date   |                            | Minimum<br>Date                       |
| 1965  | -                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                     | 1906800 23.8.65    | -                 | 1962200 22.8.65            | -                                     |
| 1966  | 298300<br>30.8.66         | there are a statement of a statement of the statement of | 2440000<br>31.8.66 |                     | 2019000<br>2.9.66  | 126900<br>16.2.66 | 1779400<br>28.8.66         | 102800<br>21.7.66                     |
| 1967  | 2275800<br>12,7,67        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2426900<br>17.7.67 | and the first water | 2068600<br>14.7.67 | 115100<br>16.2.67 | 1513300<br>20.7.67         | 132500                                |
|       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | 5                   | (Sourc             | e: Ref.No         | .3)                        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |

Few informations of the discharge data at the station Bahadurabad in Bangladesh for the period 1956 - 1962 have been obtained from the ref. no. 3 which are as follows:

| a) | Maximum recorded flood       | - 1 | 68200 cumecs  |  |  |  |  |  |
|----|------------------------------|-----|---------------|--|--|--|--|--|
| b) | Average annual discharge     | =   | 19200 cumecs  |  |  |  |  |  |
| c) | Average discharge in dry     |     |               |  |  |  |  |  |
|    | season (Nov. to April)       | = ' | 6510 cumecs   |  |  |  |  |  |
| d) | Average discharge in monsoon |     |               |  |  |  |  |  |
|    | season (May to Oct.)         | =   | 31850 cumecs  |  |  |  |  |  |
| e) | Average discharge in         |     |               |  |  |  |  |  |
|    | high period (July-Sept.)     | =   | 39900 cumecs. |  |  |  |  |  |
| f) | Minimum discharge            | =   | 3120 cumecs   |  |  |  |  |  |
|    |                              |     |               |  |  |  |  |  |

· ,

## 5.0 SEDIMENT DISCHARGE OBSERVATIONS AT VARIOUS SITES OF RIVER BRAHMAPUTRA

The Brahmaputra is one of the most sediment-charged large rivers of the world (Ref.No.5) . Among the largest rivers of the world, it is second only to the yellow river in China in the amount of sediment transported per unit of drainage area. D.C. Goswami (Ref.no.5) in his study has reported that the Himalayan catchment in Bhutan that receives about 500 cm of rainfall in the wet outer hills seems to be highly productive of sediment due to the combined effect of damaging land use practice (mainly deforestation) and friable soils.

A detail study on the sediment load in the Brahmaputra valley has been carried out by Central Water and Power Research Station, Pune for report of the study group on erosion by Brahmaputra (Ref.no.3). 5.1 Sediment discharge observations at the sites Pasighat and Pandu in India

Sediment discharge observations at the sites Pasighat and Pandu were started in 1958 and 1955 respectively by CWC. The monthly suspended sediment yield at Pasighat for the year 1958 has been shown in table 18 and the monthly discharge and silt load at Pandu for the years 1955 and 1956 has been shown in table 19.

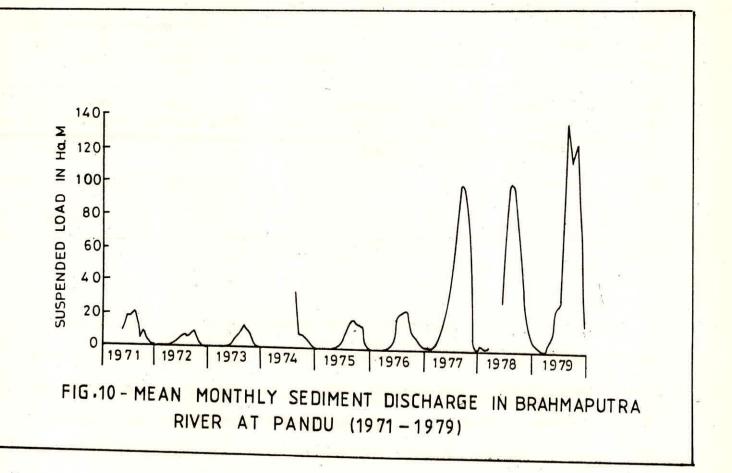
The data of surface sediment load collected at Pandu site for the years 1965, 1967, 1962 and 1973 are available in ref. no.3. The particulars of the surface sediment load at Pandu for the years 1965, 1967, 1972 & 1973 are shown in table 20.

| Table | 18: | Monthly  | suspended | sediment | yield | at | Pasighat | for |  |
|-------|-----|----------|-----------|----------|-------|----|----------|-----|--|
|       |     | the year | 1958      |          |       |    | 9        |     |  |

11

....

18 6


| Month     | Suspended sediment in Acreft. |   |
|-----------|-------------------------------|---|
| January   |                               | e |
| February  |                               |   |
| March     | 157                           |   |
| April     | 3976                          |   |
| May       | 7551                          |   |
| June      | 6632                          |   |
| July      | 8041                          |   |
| August    | 17412                         |   |
| September | 5891                          |   |
| October   | 2684                          |   |
| November  | 394                           |   |
| December  |                               |   |
| Total =   | 52738 Acreft. = 6500 H.m.     |   |

(Source: Ref.No.3)

|                     |                              | 1955                                    |                                     | 1956                         |                                          |                                        |  |  |
|---------------------|------------------------------|-----------------------------------------|-------------------------------------|------------------------------|------------------------------------------|----------------------------------------|--|--|
|                     | Sediment<br>load<br>Acre ft: | Discharge<br>volúme in<br>Cumecs<br>day | % of silt by<br>volume<br>discharge | Sediment<br>load<br>Acre ft. | Discharge<br>volume in<br>cumecs.<br>day | <pre>% of silf by vol. discharge</pre> |  |  |
| Jan.                | 800                          | 4.33                                    | 0.0093                              | 500                          | 4.60                                     | 0.0055                                 |  |  |
| Feb.                | 500                          | 3.40                                    | 0.0074                              | 600                          | 3.67                                     | 0.0082                                 |  |  |
| March               | 1200 <sup>.</sup>            | 4.97                                    | 0.012                               | 2000                         | 6.13                                     | 0.0163                                 |  |  |
| April               | 1600                         | 6.80                                    | 0.012                               | 2400                         | 8.27                                     | 0.0145                                 |  |  |
| May                 | 6800                         | 14.80                                   | 0.023                               | 45800                        | 29.57                                    | 0.077                                  |  |  |
| June                | 37500                        | 37.30                                   | 0.05                                | 61300                        | 34.50                                    | 0.089                                  |  |  |
| July                | 95800                        | 48.33                                   | 0.099                               | 4300                         | 29.53                                    | 0.073                                  |  |  |
| Aug.                | 80500                        | 45.50                                   | 0.09                                | 34800                        | 24.83                                    | 0.070                                  |  |  |
| Sept.               | 29000                        | 24.00                                   | 0.062                               | 47400                        | 28.50                                    | 0.083                                  |  |  |
| October             | 8000                         | 16.00                                   | 0.025                               | 14000                        | 18.00                                    | 0.039                                  |  |  |
| Nov.                | 2300                         | 9.00                                    | 0.013                               | 1900                         | 8.33                                     | 0.011                                  |  |  |
| December            | 900                          | 5.67                                    | 0.008                               | 800                          | 4.87                                     | 0.0082                                 |  |  |
| al in<br>e ft.      | 264900                       |                                         |                                     | 254500                       |                                          | et series                              |  |  |
| al in<br>tase meter | 32675                        |                                         |                                     | 31393                        |                                          |                                        |  |  |

# Table 19: Monthly discharge and silt load at Pandu for the years 1955 and 1956





| Max <sup>m</sup> .sediment Minm.sedi<br>load (H.M.) load (H.M |                     |                       |                    |      |       | 8 break up of the max.<br>sediment load during<br>monsoon period in<br>1967 |                   |          |
|---------------------------------------------------------------|---------------------|-----------------------|--------------------|------|-------|-----------------------------------------------------------------------------|-------------------|----------|
| Monsoon<br>Period                                             | Non-monso<br>Period | oon Monsoon<br>Period | Non-mon.<br>Period | Max. | Minn. | Coarse<br>sediment                                                          | Mediur<br>sedimen |          |
| 63681                                                         | 5778                | 7.852                 | 0.868              | 545  | 7074  | 7.960                                                                       | 9.024             | 46.647   |
| 1967                                                          | 1965                | 1972                  | 1973               | 1965 | 1972  | (12.5%)                                                                     | <b>(</b> 14.18%)  | (73.33%) |
|                                                               |                     |                       |                    |      |       | To                                                                          | tal = 63          | .68      |

Table 20: Particulars of the surface sediment load at Pandu for the years 1965, 67, 72 & 1973

(Source: Ref. No.3)

The daily sediment discharge for the Brahmaputra at Pandu during the monsoon season, 1960, is illustrated in fig. 9. It is interesting to note that the major fluctuations occur in sediment load during the monsoon period. Sediment transport in the Brahmaputra is more variable than flow (Ref. no.5). The mean monthly sediment discharge in Brahmaputra river at Pandu (1971-1979) is shown in Fig. 10. The sediment discharge at Pandu for 1971-79 indicates a modest very much larger increase in sediment discharge, particularly since 1977

5.2 Sediment discharge observations in Bangladesh

We have the little informations of the sediment data in Bangladesh from the ref. no.3 which is written below:

The average maximum sediment concentration on river Brahmaputra observed at Bahadurabad was 1180 p.p.m or 0.12% maximum silt content at

Bahadurabad at surface and near river bed has been found to be 1408 p.p.m. and 4544 p.p.m. The annual suspended sediment load has been estimated at 735 million metric tons. Average annual silt runoff per sq.km. (1956-62) = 1370 metric tons. The composition of the suspended sediment load ranged from a minimum of 70% to a maximum of 90% silt and clay. Only traces of fine and very fine sand with a maximum sand of 0.355 mm were found. The bed material is 95% fine and very fine sand with minor traces of coarse sand, silt and clay. The maximum size of bed material was 0.83 m.m.

#### REFERENCES

- Abani, K. Bhagabati, (1986), "Aspatial appraisal of land and natural vegitation in north-east India", Jr. of N.E. India Geographical Society, North-Eastern Geographer, Vol.18, No.1,2, pp. 67-77.
- Barthakur, M.(1986), "Weather and climate of North-East India", Jr. of N.E. India Geographical Society, North-Eastern Geographer, Vol.18, No.1,2, pp. 20-27.
- 3. Brahmaputra Flood Control Commission, Guwahati, (1977), "A report on comprehensive plan for Brahmaputra basin", Vol. I.
- 4. Dhar, O.N. & T.C. Changraney, (1977), "A study of meteorological situations associated with major floods in Assam during monsoon months", A report on comprehensive plan for Brahmaputra basin, Vol.I, pp. 203-211, Brahmaputra Flood Control Commission, Guwahati.
- 5. Goswami, D.C., (1985), "Physiography, basin denundation and channel aggradation of Brahmaputra river", Water Resources Research Vol.21, No.7, pp. 959-978.
- 6. Gansser, A., (1964), "Geology of the Himalayas", pp. 222-231, John Wiley, New York.
- 7. Geological Survey of India, (1974), "Geology and mineral resources of the states of India", pp. 29-56, Misc. Publ.30, Geol.Surv. of India, Delhi.
- Geological Survey of India, (1977), "Contributions of geomorphology and geohydrology of the Brahmaputra valley", pp.105-110, Misc. Publ. 32, G.S.I., Delhi.
- Murthy, M.V.N., (1968), "Geomorphological evolution of the Assam", in 21st International Geographical Congress Symposium, pp. 10-14, Guwahati University, India.
- 10. Mithal, R.S., and L.S.Srivastava,(1959), "Geotectonic position and earthquakes of Ganga Brahmaputra region", Paper presented at Earthquake Engr. Symp., Roorkee, India.
- 11. Rao, K.L.,(1979), "India's Water Wealth", pp.75-79, Orient Longman, New Delhi.
- 12. Taher, M.,(1986), "Physiographic frame work of North-East India, Jr. of the N-E India Geographical Society, Vol.18, No.1&2, pp.1-19.
- 13. Wadia, D.N.,(1968), "The Himalayan Mountains : Its origin and geographical relations in mountains and rivers of India", p.42, 21st Int. Geog. Cong. Nat. Comm.Geogr., Calcutta.

~.

DIRECTOR

2

SAT

## STUDY CROUP

Dr K K S Bhatia, Scientist F Sudhir Kumar, Scientist B Umesh Kumar Singh, R.A.